Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

79156

Sigma-Aldrich

3-Deoxy-2-keto-6-phosphogluconic acid lithium salt

≥95% (TLC)

Synonym(s):

(4S,5R)-4,5-Dihydroxy-2-oxo-6-phosphonooxyhexanoic acid lithium salt, 2-Dehydro-3-deoxy-6-phospho-D-gluconate lithium salt, 2-Keto-3-deoxy-6-phosphogluconate lithium salt, 3-Deoxy-2-keto-D-gluconic acid 6-phosphate lithium salt, 3-Deoxy-D-erythro-hexulosonic acid 6-phosphate lithium salt, KDPG

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H11O9P · xLi+
CAS Number:
Molecular Weight:
258.12 (free acid basis)
UNSPSC Code:
12352201
NACRES:
NA.25

Quality Level

assay

≥95% (TLC)

form

powder

optical activity

[α]/D 9.0±1.0°, 3 hr, c = 0.1 in H2O

color

white

storage temp.

−20°C

InChI

1S/C6H11O9P/c7-3(1-4(8)6(10)11)5(9)2-15-16(12,13)14/h3,5,7,9H,1-2H2,(H,10,11)(H2,12,13,14)/t3-,5+/m0/s1

InChI key

OVPRPPOVAXRCED-WVZVXSGGSA-N

Looking for similar products? Visit Product Comparison Guide

Biochem/physiol Actions

2-dehydro-3-deoxy-phosphogluconate is a substrate for the enzyme 2-dehydro-3-deoxy-phosphogluconate aldolase which converts it into D-glyceraldehyde 3-phosphate plus pyruvate.
Metabolite in the pentose phosphate pathway, generating NADPH and pentoses; and in the in pentose and glucuronate interconversions; key intermediate in the Entner-Doudoroff pathway of some bacteria, substrate of 2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, catalyzing the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. It was found to be the carbon catabolite repression signal of phenylacetic acid metabolism in P. putida KT2440. Expression from Pu was repressed mainly via PtsN in response to high levels of 2-dehydro-3-deoxygluconate-6-phosphate.

Packaging

Bottomless glass bottle. Contents are inside inserted fused cone.

Other Notes

To gain a comprehensive understanding of our extensive range of Monosaccharides for your research, we encourage you to visit our Carbohydrates Category page.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Stephen W B Fullerton et al.
Bioorganic & medicinal chemistry, 14(9), 3002-3010 (2006-01-13)
In vivo, 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible, stereospecific retro-aldol cleavage of KDPG to pyruvate and D-glyceraldehyde-3-phosphate. The enzyme is a lysine-dependent (Class I) aldolase that functions through the intermediacy of a Schiff base. Here, we propose a mechanism for
Juhyun Kim et al.
Microbiology (Reading, England), 155(Pt 7), 2420-2428 (2009-05-02)
The growth pattern of Pseudomonas putida KT2440 in the presence of glucose and phenylacetic acid (PAA), where the sugar is used in preference to the aromatic compound, suggests that there is carbon catabolite repression (CCR) of PAA metabolism by glucose
Viatcheslav Zaitsev et al.
Biochemistry, 57(26), 3797-3806 (2018-05-31)
The thermoacidophilic archaea Picrophilus torridus and Sulfolobus solfataricus catabolize glucose via a nonphosphorylative Entner-Doudoroff pathway and a branched Entner-Doudoroff pathway, respectively. Key enzymes for these Entner-Doudoroff pathways are the aldolases, 2-keto-3-deoxygluconate aldolase (KDG-aldolase) and 2-keto-3-deoxy-6-phosphogluconate aldolase [KD(P)G-aldolase]. KDG-aldolase from P.
Teresa del Castillo et al.
Journal of bacteriology, 189(18), 6602-6610 (2007-07-10)
Pseudomonas putida KT2440(pWW0) can use toluene via the TOL plasmid-encoded catabolic pathways and can use glucose via a series of three peripheral chromosome-encoded routes that convert glucose into 6-phosphogluconate (6PG), namely, the glucokinase pathway, in which glucose is transformed to
A new phosphorylated intermediate in glucose oxidation.
J MACGEE et al.
The Journal of biological chemistry, 210(2), 617-626 (1954-10-01)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service