All Photos(3)



Graphene oxide

powder, 15-20 sheets, 4-10% edge-oxidized

Linear Formula:
PubChem Substance ID:

Quality Level




water: dispersible (polar solvents)

bulk density

~1.8 g/cm3

SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

The material basically consists of exfoliated graphene nanoplatelets containing functional organic groups. The oxygen content is less than 5%; the majority groups are hydroxyls (OH), which enables further chemical modifications to add new functionalities. The functionalization approach was designed to attach most of the groups on the border of the foils, aiming to preserve the intrinsic properties of graphene (e.g.: electric conductivity).
  • Form: Brown/Black powder
  • Bulk Density: ~1.8 g/cm3
  • Solubility: Dispersible in water and polar solvents
  • Number of layers: 15-20
  • Oxidation: 4-10%


The product is aimed for dispersion and/or incorporation in polar solvents (e.g.: water, THF and DMF) and polar polymeric matrices (e.g.: PLA, PA and PET). It is suitable for in situ polymerization, direct resin mixing and molding, solvent dissolution, extrusion processing after incorporation. Potential applications include:
  • Nanocomposites [1,2]
  • Anti-corrosion coatings [3,4]
  • Films with barrier properties [5,6]
  • Membranes for separation [7,8]
  • Conductive inks [9,10]
  • Energy storage [11,12]


1 g in glass bottle

Storage Class Code

11 - Combustible Solids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

More documents

Quotes and Ordering

M M Abdel-Mottaleb et al.
Journal of the mechanical behavior of biomedical materials, 96, 118-124 (2019-04-30)
In this work, Polyacrylonitrile nanofibers were enhanced by graphene oxide and zinc oxide, in terms of enhanced the photocatalytic activity and mechanical properties for the composite nanofibers. Photocatalytic degradation of two organic dyes methylene blue dye and indigo carmine dye
Beatriz Salesa et al.
Nanomaterials (Basel, Switzerland), 10(2) (2020-01-30)
Alginate-based materials hold great promise in bioengineering applications such as skin wound healing and scaffolds for tissue engineering. Nevertheless, cell adhesion of mammalian cells on these hydrophilic materials is very poor. In cases such as polycaprolactone, poly(hydroxy-3-butyrate-co-3-valerate) and gelatin, the
Transport properties of zigzag graphene nanoribbons with oxygen edge decoration
Zhang CX, et al.
Organic Electronics, 13(11), 2494- 2501 (2012)
Belén Frígols et al.
PloS one, 14(3), e0212819-e0212819 (2019-03-08)
Alginate is considered an exceptional biomaterial due to its hydrophilicity, biocompatibility, biodegradability, nontoxicity and low-cost in comparison with other biopolymers. We have recently demonstrated that the incorporation of 1% graphene oxide (GO) into alginate films crosslinked with Ca2+ cations provides
Zhiwen Yang et al.
Frontiers in pharmacology, 11, 1206-1206 (2020-09-26)
Graphene, known as "black gold", has important applications in various fields. In previous studies, it has been proved that graphene oxide (GO) which is a derivative of graphene has low toxicity. However, the immunotoxicity of GO has not been fully


Carbon Nanomaterials: Elemental Analyses and Quantification of Their Accumulation in Living Cells

Carbon nanomaterials (CNMs), such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and graphene (Figure 1), have diverse commercial applications including lighter and stronger composite materials, improved energy storage devices, more sensitive sensors, and smaller transistors.

Graphene Nanoribbons: Production and Applications

Graphene is a one-atomic-layer thick two-dimensional material made of carbon atoms arranged in a honeycomb structure. Its fascinating electrical, optical, and mechanical properties ignited enormous interdisciplinary interest from the physics, chemistry, and materials science fields.

3D Printing Graphene Ink: Creating Electronic and Biomedical Structures and Devices

Since its discovery little more than a decade ago,1 the two-dimensional (2D) allotrope of carbon—graphene—has been the subject of intense multidisciplinary research efforts.

Graphene and Other 2D Crystals for Rechargeable Batteries

Advanced technologies for energy conversion and storage are widely sought after for their potential to improve consumer and electronic device performance as well as for the prospect of reducing the societal and environmental impact of energy generation.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service