Skip to Content
MilliporeSigma
All Photos(3)

Documents

733490

Sigma-Aldrich

Antimony(III) telluride

greener alternative

powder, −325 mesh, 99.96% trace metals basis

Synonym(s):

Antimony sesquitelluride, Antimony telluride, Diantimony tritelluride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Sb2Te3
CAS Number:
Molecular Weight:
626.32
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

99.96% trace metals basis

form

powder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

particle size

−325 mesh

mp

629 °C

density

6.5 g/mL at 25 °C (lit.)

greener alternative category

SMILES string

[Te]=[Sb][Te][Sb]=[Te]

InChI

1S/2Sb.3Te

InChI key

BPDQXJZWVBPDSN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Antimony(III) telluride (Sb2Te3) is a three dimensional topological insulator that can be used as a binary sesquichalogenide. It forms p-type semiconducting films for the formation of thermoelectric materials.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Sb2Te3 in combination with bismuth(III) telluride (Bi2Te3) can form super-lattices, which facilitate the fabrication of devices such as thermoelectric generators.

pictograms

Exclamation markEnvironment

signalword

Warning

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Chronic 2

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Pradyumnan, P. P.; Swathikrishnan
Indian Journal of Pure and Applied Physics, 48, 115-115 (2010)
Scherrer, H.; Scherrer, S.
CRC Handbook of Thermoelectronics, 211-211 (1995)
A wearable thermoelectric generator fabricated on a glass fabric
Kim SJ, et al.
Energy & Environmental Science, 7(6), 1959-1965 (2014)

Articles

Thermoelectric materials comprise a wide range of solid compounds distinguished by their ability to convert thermal and electrical energy.

In recent years, the price of tellurium, a key component in the bestperforming thermoelectric materials, has increased significantly, leading to the question, “Is it economically viable to produce thermoelectric generators on an industrial scale?

The price of tellurium, a key component in many thermoelectric materials, has risen in recent years, leading to the search for more cost-effective substitutes. This article presents silicide materials as a cheaper potential alternative.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service