Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

537306

Sigma-Aldrich

D-Hydroorotic acid

98%

Synonym(s):

R-2,6-Dioxohexahydro-4-pyrimidinecarboxylic acid, Dihydro-D-orotic acid

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C5H6N2O4
CAS Number:
Molecular Weight:
158.11
MDL number:
UNSPSC Code:
12352005
PubChem Substance ID:
NACRES:
NA.22

Quality Level

assay

98%

optical activity

[α]20/D −33°, c = 1 in NaHCO3

mp

255 °C (dec.) (lit.)

functional group

carboxylic acid

SMILES string

OC(=O)[C@H]1CC(=O)NC(=O)N1

InChI

1S/C5H6N2O4/c8-3-1-2(4(9)10)6-5(11)7-3/h2H,1H2,(H,9,10)(H2,6,7,8,11)/t2-/m1/s1

InChI key

UFIVEPVSAGBUSI-UWTATZPHSA-N

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Daniel Ken Inaoka et al.
Biochemistry, 47(41), 10881-10891 (2008-09-24)
Dihydroorotate dehydrogenase (DHOD) from Trypanosoma cruzi (TcDHOD) is a member of family 1A DHOD that catalyzes the oxidation of dihydroorotate to orotate (first half-reaction) and then the reduction of fumarate to succinate (second half-reaction) in the de novo pyrimidine biosynthesis
Tamiko N Porter et al.
Biochemistry, 43(51), 16285-16292 (2004-12-22)
Dihydroorotase (DHO) is a zinc metalloenzyme that functions in the pathway for the biosynthesis of pyrimidine nucleotides by catalyzing the reversible interconversion of carbamoyl aspartate and dihydroorotate. A chemical mechanism was proposed on the basis of an analysis of the
Juliana Cheleski et al.
Analytical biochemistry, 399(1), 13-22 (2009-11-26)
Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) catalyzes the oxidation of l-dihydroorotate to orotate with concomitant reduction of fumarate to succinate in the de novo pyrimidine biosynthetic pathway. Based on the important need to characterize catalytic mechanism of TcDHODH, we have tailored
Idalia Sariego et al.
Parasitology international, 55(1), 11-16 (2005-09-21)
Dihydroorotate dehydrogenase (DHOD) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and is essential in Trypanosoma cruzi, the parasitic protist causing Chagas' disease. T. cruzi and human DHOD have different biochemical properties, including the electron acceptor capacities
Mark A Anderson et al.
Biochemistry, 45(23), 7132-7139 (2006-06-07)
In the pyrimidine biosynthetic pathway, N-carbamyl-L-aspartate (CA-asp) is converted to L-dihydroorotate (DHO) by dihydroorotase (DHOase). The mechanism of this important reaction was probed using primary and secondary 15N and 13C isotope effects on the ring opening of DHO using isotope

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service