跳轉至內容
Merck
全部照片(5)

重要文件

D8375

Sigma-Aldrich

D-2-脱氧葡萄糖

≥98% (GC), crystalline

同義詞:

2-脱氧葡萄糖, 2-脱氧-D-葡糖

登入查看組織和合約定價


About This Item

經驗公式(希爾表示法):
C6H12O5
CAS號碼:
分子量::
164.16
Beilstein:
1723331
EC號碼:
MDL號碼:
分類程式碼代碼:
12352201
PubChem物質ID:
NACRES:
NA.25

生物源

synthetic

化驗

≥98% (GC)

形狀

crystalline

技術

gas chromatography (GC): suitable
inhibition assay: suitable

顏色

white to off-white

mp

146-147 °C (lit.)

溶解度

H2O: 0.250 g/5mL

應用

clinical research
life science and biopharma
metabolomics

儲存溫度

2-8°C

SMILES 字串

OC[C@@H](O)[C@@H](O)[C@H](O)CC=O

InChI

1S/C6H12O5/c7-2-1-4(9)6(11)5(10)3-8/h2,4-6,8-11H,1,3H2/t4-,5-,6+/m1/s1

InChI 密鑰

VRYALKFFQXWPIH-PBXRRBTRSA-N

尋找類似的產品? 前往 產品比較指南

一般說明

2-脱氧-D-葡萄糖是一种不可代谢的葡萄糖类似物,通过靶向己糖激酶(糖酵解的限速步骤)来破坏糖酵解。它被己糖激酶磷酸化为 2-DG-P,在细胞中积累,消耗细胞 ATP。这种方法可以有效地饿死和杀死癌细胞,也可以抑制依赖糖酵解进行复制的病毒细胞。这种多功能分子可应用于癌症、病毒学、代谢组学和生化研究。

應用

2-脱氧-D-葡萄糖(2-DG)用于缺乏葡萄糖补给的研究,以调用和研究反调节反应(CRR)的过程。2-脱氧-D-葡萄糖用于涉及放射和化学敏化以及氧化应激的抗癌策略开发中。

生化/生理作用

2-脱氧-D-葡萄糖(2-脱氧葡萄糖)是一种葡萄糖类似物,可通过作用于己糖激酶这一糖酵解限速步骤来抑制糖酵解。 它会被己糖激酶磷酸化为不能被磷酸葡萄糖异构酶进一步代谢的2-DG-P。 这将导致2-DG-P在细胞中的集聚以及细胞ATP的缺失。在体外,2-脱氧葡萄糖已显示出可诱导自噬、提高ROS的产生并激活AMPK。

特點和優勢

  • 高纯度化合物适用于各种研究应用

包裝

无底玻璃瓶。内含物装在插入的融合锥内。

其他說明

为了全面了解我们针对客户研究提供的各种单糖产品,建议您访问我们的碳水化合物分类页面。
如需了解生化试剂系列的更多信息,请填写此表

同類產品

儲存類別代碼

11 - Combustible Solids

水污染物質分類(WGK)

WGK 3

閃點(°F)

Not applicable

閃點(°C)

Not applicable

個人防護裝備

Eyeshields, Gloves, type N95 (US)


從最近期的版本中選擇一個:

分析證明 (COA)

Lot/Batch Number

未看到正確版本?

如果您需要一個特定的版本,您可以透過批號來尋找特定憑證。

已經擁有該產品?

您可以在文件庫中找到最近購買的產品相關文件。

存取文件庫

Matthew E Mead et al.
mSphere, 4(1) (2019-02-23)
Aspergillus fischeri is closely related to Aspergillus fumigatus, the major cause of invasive mold infections. Even though A. fischeri is commonly found in diverse environments, including hospitals, it rarely causes invasive disease. Why A. fischeri causes less human disease than
Madhusudhanan Sukumar et al.
The Journal of clinical investigation, 123(10), 4479-4488 (2013-10-05)
Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately
Rosemarie Ungricht et al.
The Journal of cell biology, 209(5), 687-703 (2015-06-10)
Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure
Isaline Rowe et al.
Nature medicine, 19(4), 488-493 (2013-03-26)
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. Recent identification of signaling cascades deregulated in ADPKD has led to the initiation of several clinical trials, but an approved therapy is still
Melissa A Burmeister et al.
American journal of physiology. Endocrinology and metabolism, 304(7), E677-E685 (2013-01-24)
Glucagon-like peptide-1 (GLP-1) suppresses food intake via activation of a central (i.e., brain) GLP-1 receptor (GLP-1R). Central AMP-activated protein kinase (AMPK) is a nutrient-sensitive regulator of food intake that is inhibited by anorectic signals. The anorectic effect elicited by hindbrain

文章

We presents an article about the Warburg effect, and how it is the enhanced conversion of glucose to lactate observed in tumor cells, even in the presence of normal levels of oxygen. Otto Heinrich Warburg demonstrated in 1924 that cancer cells show an increased dependence on glycolysis to meet their energy needs, regardless of whether they were well-oxygenated or not.

我們的科學家團隊在所有研究領域都有豐富的經驗,包括生命科學、材料科學、化學合成、色譜、分析等.

聯絡技術服務