Skip to Content
MilliporeSigma
  • Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I(2) receptor antagonists.

Reversible inhibition of intracellular calcium influx through NMDA receptors by imidazoline I(2) receptor antagonists.

European journal of pharmacology (2009-12-05)
Susan X Jiang, Rong-Yuan Zheng, Jin-Qi Zeng, Xiao-Li Li, Zhao Han, Sheng T Hou
ABSTRACT

Intracellular calcium ([Ca(2+)]i) influx through N-methyl-d-aspartic acid (NMDA) receptors in cortical neurons is central to NMDA receptor-mediated excitotoxicity. Drugs that uncompetitively modulate NMDA receptor-mediated [Ca(2+)]i influx are potential leads for development to treat NMDA receptor-mediated neuronal damage since these drugs spare NMDA receptor normal functions. Ligands to alpha(2)-adrenoceptors and imidazoline I(2) receptors confer neuroprotection possibility through modulating NMDA receptor-mediated [Ca(2+)]i influx. Here, we investigated the characteristics of several ligands to alpha(2)-adrenoceptors and imidazoline I(2) receptor, in inhibiting NMDA receptor-mediated [Ca(2+)]i influx in cultured cortical neurons using a ratiometric calcium imaging technique. In contrast to MK801, which non-reversibly blocks NMDA receptor-mediated [Ca(2+)]i influx, imidazoline I(2) receptor antagonists, Idazoxan, and 2-(2-benzofuranyl)-2-imidazoline (2-BFI)-mediated inhibition of [Ca(2+)]i influx can be rapidly reversed when removed, in a manner similar to that of memantine, an uncompetitive antagonist to NMDA receptors. Interestingly, ligands to alpha(2)-adrenoceptors, including agmatine sulfate and yohimbine, and a ligand to the nicotinic receptor, levamisol, neither inhibited NMDA receptor-mediated [Ca(2+)]i influx, nor provided neuroprotection against glutamate toxicity, suggesting selective inhibition of NMDA receptor activities. The inhibition of NMDA receptor by Idazoxan and 2-BFI also led to the suppression of NMDA receptor-mediated calpain activity as a result of blocking NMDA receptor activity, rather than through direct inhibition of calpain activity. Collectively, these studies demonstrated that imidazoline I(2) receptor antagonists transiently and reversibly block NMDA receptor-mediated [Ca(2+)]i influx. These compounds are leads for further development as uncompetitive antagonists to NMDA receptor-mediated excitotoxicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Yohimbine hydrochloride, ≥98% (HPLC), powder