Skip to Content
MilliporeSigma
  • Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives.

Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives.

Scientific reports (2015-08-25)
Jin Yeong Na, Boseok Kang, Dong Hun Sin, Kilwon Cho, Yeong Don Park
ABSTRACT

Spin-coating has been used extensively in the fabrication of electronic devices; however, the effects of the processing parameters have not been fully explored. Here, we systematically characterize the effects of the spin-coating time on the microstructure evolution during semiconducting polymer solidification in an effort to establish the relationship between this parameter and the performances of the resulting polymer field-effect transistors (FETs). We found that a short spin-coating time of a few seconds dramatically improve the morphology and molecular order in a conjugated polymer thin film because the π-π stacking structures formed by the polymer molecules grow slowly and with a greater degree of order due to the residual solvent present in the wet film. The improved ordering is correlated with improved charge carrier transport in the FETs prepared from these films. We also demonstrated the effects of various processing additives on the resulting FET characteristics as well as on the film drying behavior during spin-coating. The physical properties of the additives are found to affect the film drying process and the resulting device performance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Sigma-Aldrich
Chlorobenzene, SAJ special grade, ≥99.5%
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Chlorobenzene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%, for residue analysis
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
1,2,4-Trichlorobenzene, anhydrous, ≥99%
Sigma-Aldrich
Chlorobenzene, anhydrous, 99.8%
Sigma-Aldrich
1,2-Dichlorobenzene, anhydrous, 99%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Chloroform, suitable for HPLC
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Carbon nanofibers, graphitized, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Carbon nanofibers, pyrolitically stripped, platelets(conical), >98% carbon basis, D × L 100 nm × 20-200 μm
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles