Skip to Content
MilliporeSigma
  • Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis.

Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis.

The Journal of clinical investigation (2015-02-11)
Subhamoy Dasgupta, Nagireddy Putluri, Weiwen Long, Bin Zhang, Jianghua Wang, Akash K Kaushik, James M Arnold, Salil K Bhowmik, Erin Stashi, Christine A Brennan, Kimal Rajapakshe, Cristian Coarfa, Nicholas Mitsiades, Michael M Ittmann, Arul M Chinnaiyan, Arun Sreekumar, Bert W O'Malley
ABSTRACT

Metabolic pathway reprogramming is a hallmark of cancer cell growth and survival and supports the anabolic and energetic demands of these rapidly dividing cells. The underlying regulators of the tumor metabolic program are not completely understood; however, these factors have potential as cancer therapy targets. Here, we determined that upregulation of the oncogenic transcriptional coregulator steroid receptor coactivator 2 (SRC-2), also known as NCOA2, drives glutamine-dependent de novo lipogenesis, which supports tumor cell survival and eventual metastasis. SRC-2 was highly elevated in a variety of tumors, especially in prostate cancer, in which SRC-2 was amplified and overexpressed in 37% of the metastatic tumors evaluated. In prostate cancer cells, SRC-2 stimulated reductive carboxylation of α-ketoglutarate to generate citrate via retrograde TCA cycling, promoting lipogenesis and reprogramming of glutamine metabolism. Glutamine-mediated nutrient signaling activated SRC-2 via mTORC1-dependent phosphorylation, which then triggered downstream transcriptional responses by coactivating SREBP-1, which subsequently enhanced lipogenic enzyme expression. Metabolic profiling of human prostate tumors identified a massive increase in the SRC-2-driven metabolic signature in metastatic tumors compared with that seen in localized tumors, further implicating SRC-2 as a prominent metabolic coordinator of cancer metastasis. Moreover, SRC-2 inhibition in murine models severely attenuated the survival, growth, and metastasis of prostate cancer. Together, these results suggest that the SRC-2 pathway has potential as a therapeutic target for prostate cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Formic acid, ACS reagent, ≥88%
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Supelco
Carbendazim, PESTANAL®, analytical standard
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Carbendazim, 97%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Acetonitrile, for chromatography
Sigma-Aldrich
Formic acid, JIS special grade, ≥98.0%
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Acetonitrile, for residue analysis, JIS 5000
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 1000
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)