Skip to Content
MilliporeSigma
  • Rapid identification of ligand-binding sites by using an assignment-free NMR approach.

Rapid identification of ligand-binding sites by using an assignment-free NMR approach.

Journal of medicinal chemistry (2013-11-01)
Yuya Kodama, Koh Takeuchi, Nobuhisa Shimba, Kohki Ishikawa, Ei-ichiro Suzuki, Ichio Shimada, Hideo Takahashi
ABSTRACT

In this study, we developed an assignment-free approach for rapid identification of ligand-binding sites in target proteins by using NMR. With a sophisticated cell-free stable isotope-labeling procedure that introduces (15)N- or (13)C-labels to specific atoms of target proteins, this approach requires only a single series of ligand titrations with labeled targets. Using titration data, ligand-binding sites in the target protein can be identified without time-consuming assignment procedures. We demonstrated the feasibility of this approach by using structurally well-characterized interactions between mitogen-activated protein (MAP) kinase p38α and its inhibitor 2-amino-3-benzyloxypyridine. Furthermore, we confirmed the recently proposed fatty acid binding to p38α and confirmed the fatty acid-binding site in the MAP kinase insert region.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Amino-3-benzyloxypyridine, 99%
Sigma-Aldrich
Pyridine hydrochloride, 98%
Supelco
Pyridine solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Pyridine hydrochloride, purum, ≥98.0% (AT)
Sigma-Aldrich
Pyridine, ACS reagent, ≥99.0%
Sigma-Aldrich
Pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
Pyridine, biotech. grade, ≥99.9%
Sigma-Aldrich
Pyridine, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Pyridine, ACS reagent, ≥99.0%
Sigma-Aldrich
Pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Pyridine, suitable for hydroxyl value determination, ≥99.5%
Sigma-Aldrich
Pyridine, JIS special grade, ≥99.5%
Sigma-Aldrich
Pyridine hydrobromide, 98%
Sigma-Aldrich
Pyridine, ≥99%
Supelco
Pyridine, analytical standard
Sigma-Aldrich
Pyridine, suitable for HPLC, ≥99.9%