Skip to Content
MilliporeSigma
All Photos(4)

Key Documents

932566

Sigma-Aldrich

Sodium Terephthalate Composite

high-capacity anode for sodium ion batteries

Synonym(s):

Disodium terephthalate-carbon electrode, sodium-ion battery anode material

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
12352401
NACRES:
NA.23

Quality Level

SMILES string

[Na+].[Na+].[O-]C(=O)c1ccc(cc1)C(=O)[O-]

Application

This product is a composite of disodium terephthalate and high surface area carbon nanosheets. With its low Na insertion voltage (0.2-0.6 V vs. Na+/Na), this material is a benchmark for counter electrode when developing new fast charging sodium-ion battery technologies, without risk of forming sodium dendrites. The composite is specially formulated to yield excellent contact of the active disodium terephthalate with the carbon black. This contact affords the high electronic conductivity and surface area that allows high capacity with a long cycle life. This electrode material was fabricated following sustainable procedures that minimize environmental impact. Further, it′s free of the toxic transition metals such as cobalt or nickel, thus a green alternative to conventional battery materials.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 2


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells
Abouimrane, A., et al.
Energy & Environmental Science, 5, 9632-9632 (2012)
Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature Sodium-Ion Battery
Zhao, L., et al.
Advanced Energy Materials, 2, 962-965 (2012)
Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries
Wan, F., et al.
Nano Energy, 13, 450-457 (2015)
Towards sustainable and versatile energy storage devices: an overview of organic electrode materials
Song, Z., et al.
Energy & Environmental Science, 6, 2280-2280 (2013)
A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a High-Performance Anode for Sodium-Ion Batteries
Cao, T.; et al.
Chemistry (Weinheim An Der Bergstrasse, Germany), 23, 16586-16592 (2017)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service