Skip to Content
MilliporeSigma
All Photos(4)

Key Documents

241911

Sigma-Aldrich

Tungsten(VI) chloride

≥99.9% trace metals basis

Synonym(s):

Tungsten hexachloride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
WCl6
CAS Number:
Molecular Weight:
396.56
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

43 mmHg ( 215 °C)

Quality Level

assay

≥99.9% trace metals basis

form

powder

reaction suitability

reagent type: catalyst
core: tungsten

impurities

≤1000.0 ppm Trace Metal Analysis

bp

347 °C (lit.)

mp

275 °C (lit.)

density

3.52 g/mL at 25 °C (lit.)

SMILES string

Cl[W](Cl)(Cl)(Cl)(Cl)Cl

InChI

1S/6ClH.W/h6*1H;/q;;;;;;+6/p-6

InChI key

KPGXUAIFQMJJFB-UHFFFAOYSA-H

Looking for similar products? Visit Product Comparison Guide

General description

Tungsten(VI) chloride is a highly reactive crystalline solid commonly used in the field of catalysis, perovskite solar cells, and light-emitting devices. It is a diamagnetic solid. However, it can be highly corrosive and have strong oxidizing effects.

Application

Tungsten(VI) chloride can be used:
  • As a starting material to synthesize tungsten nanoparticles and Mo-doped urchin-like W18O49 Nanostructure using the hydrothermal method. The Mo-W18O49 electrocatalyst exhibited excellent electrocatalytic activity toward Hydrogen Evolution Reaction (HER). By doping Mo species into defect-rich W18O49 ultrathin nanowires, it has also been demonstrated to be an excellent candidate for photocatalytic N2 fixation to ammonia.
  • To synthesize crystalline mesoporous WO3 with 11 nm pore size utilizing a high-molecular-weight amphiphilic block copolymer as the structure-directing agent. The materials performed admirably in terms of H2S gas sensing.
  • To fabricate Tungsten disulfide and WS2/reduced graphene oxide (WS2/rGO) nanosheets by hydrothermal synthesis. The WS2/rGO nanosheets showed exceptional electrocatalytic activity for the hydrogen evolution reaction.
  • To produce the WS2-nanoflowers@rGO and nitrogen-doped carbon spheres@WS2 composite as an anode material for enhanced electrode performance in lithium-ion batteries.
  • As a dopant to fabricate TiO2 compact layers for perovskite solar cells with enhanced performance.
  • As a catalyst to prepare self-healing epoxy composites with microcapsules.
  • As a catalyst for transamidation of tertiary alkyl amides.

pictograms

CorrosionExclamation mark

signalword

Danger

Hazard Classifications

Aquatic Chronic 3 - Eye Dam. 1 - Skin Corr. 1B - STOT SE 3

target_organs

Respiratory system

Storage Class

8A - Combustible corrosive hazardous materials

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Giuseppe Bengasi et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 25(35), 8313-8320 (2019-04-03)
Oxidative chemical vapour deposition of (5,15-diphenylporphyrinato)nickel(II) (NiDPP) with iron(III) chloride as oxidant yielded a conjugated poly(metalloporphyrin) as a highly coloured thin film, which is potentially useful for optoelectronic applications. This study clarified the reactive sites of the porphyrin monomer NiDPP
Liyan Zhou et al.
Scientific reports, 9(1), 1357-1357 (2019-02-06)
Tungsten Disulfide (WS2) is considered to be a promising Hydrogen Evolution Reaction (HER) catalyst to replace noble metals (such as Pt and Pd). However, progress in WS2 research has been impeded by the inertness of the in-plane atoms during HER.
Tetrahedron Letters, 47, 5167-5167 (2006)
Bin Zheng et al.
Biomaterials science, 6(6), 1379-1389 (2018-04-14)
Tumor-associated macrophages are highly versatile effector cells that have been used to kill tumor cells. Herein, the macrophages as cell-based biocarriers are used for the targeted delivery of photothermal reagents for promoting the efficiency of killing tumor cells by activating
Firouzabadi, H. et al.
Synlett, 413-413 (1999)

Articles

In the last two decades, a new method termed solid-state metathesis (SSM) has been developed to synthesize compounds that are often difficult to produce conventionally.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service