Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

211141

Sigma-Aldrich

Lead(II) bromide

≥98%

Synonym(s):

Dibromolead, Lead dibromide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
PbBr2
CAS Number:
Molecular Weight:
367.01
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

≥98%

form

powder

reaction suitability

reagent type: catalyst
core: lead

bp

892 °C (lit.)

mp

371 °C (lit.)

solubility

ethanol: insoluble(lit.)

density

6.66 g/mL at 25 °C (lit.)

SMILES string

Br[PbH2]Br

InChI

1S/2BrH.Pb/h2*1H;/q;;+2/p-2

InChI key

ZASWJUOMEGBQCQ-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

Application

Lead(II) bromide (PbBr2) can be used in the fabrication of nanoscale quasi-2D layered perovskites, which are potentially utilized as light-emitting materials. It can also be used for the synthesis of deep blue fluorescent lead bromide perovskite microdisks. These microdisks can be used as direct bandgap semiconductors for light-emitting diodes (LEDs).

signalword

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Repr. 1A - STOT RE 2

Storage Class

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type P3 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A facile one-pot synthesis of deep blue luminescent lead bromide perovskite microdisks
Yuan Z, et al.
Chemical Communications (Cambridge, England), 51(91), 16385-16388 (2015)
Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions
Yuan Z, et al.
Chemical Communications (Cambridge, England), 52(20), 3887-3890 (2016)
Hongying Duan et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 60(7), 1447-1451 (2004-05-19)
In our experiments, it was observed that adding bromide to Pb2+ solution of N,N'-dimethylformamide (DMF), the highly emissive cluster Pb4Br11(3-) can be formed and the fluorescence intensity of the formed cluster is proportional to the concentration of Pb2+, based on
A O Maslat et al.
Journal of trace elements and electrolytes in health and disease, 3(4), 187-191 (1989-12-01)
The mutagenicity of lead (II) bromide (a combustion product of the gasoline additives lead (IV) tetraethyl and 1,2-dibromoethane) was investigated using various strains of bacteria. Taking prodigiosin (the red pigment) production as a marker, lead (II) bromide was found to
A N Hamir et al.
Australian veterinary journal, 57(9), 401-406 (1981-09-01)
Eight-month-old dogs maintained on a high-fat-low-calcium diet were administered a mixture of lead chloride, lead bromide and lead sulphate for prolonged periods at 4 different dose levels. Dogs on high levels of leads showed marked weight loss and gastrointestinal symptoms

Articles

Colloidal quantum dots (CQDs) are semiconducting crystals of only a few nanometers (ca. 2–12 nm) coated with ligand/surfactant molecules to help prevent agglomeration.

The past several decades have seen major advancements in the synthesis of metal nanomaterials. Most recently, controlled synthesis has become versatile enough to regulate the exact number of atoms and ligands of very small metal nanoparticles, referred to as “clusters”.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service