Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

201146

Sigma-Aldrich

Lithium hexafluorophosphate

98%

Synonym(s):

Lithium phosphorus fluoride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiPF6
CAS Number:
Molecular Weight:
151.91
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

assay

98%

form

powder

mp

200 °C (dec.) (lit.)

solubility

H2O: slightly soluble(lit.)

density

1.5 g/mL (lit.)

SMILES string

[Li+].F[P-](F)(F)(F)(F)F

InChI

1S/F6P.Li/c1-7(2,3,4,5)6;/q-1;+1

InChI key

AXPLOJNSKRXQPA-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Lithium hexafluorophosphate is an electrolyte salt widely used in lithium-ion batteries.

Features and Benefits

  • It can form suitable SEI membranes in electrodes, especially in the cathode
  • It can implement passivation for anode current collectors to prevent their dissolution
  • Wide windows of electrical stability
  • Excellent solubility and high conductivity in various solvents
  • Environment-friendly

signalword

Danger

Hazard Classifications

Acute Tox. 3 Oral - Eye Dam. 1 - Skin Corr. 1A - STOT RE 1 Inhalation

target_organs

Bone,Teeth

Storage Class

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

wgk_germany

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

M D S Lekgoathi et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 153, 651-654 (2015-10-11)
The structure of LiPF6 has been probed using Raman scattering as well as pXRD and the results are compared and contrasted. The conventional Bragg angle scattering pXRD determines that dry LiPF6 crystallizes in a trigonal structure (Space Group R-3 (148))
Kewei Liu et al.
ACS nano, 9(6), 6041-6049 (2015-06-06)
The two-dimensional single-layer and few-layered graphene exhibit many attractive properties such as large specific surface area and high charge carrier mobility. However, graphene sheets tend to stack together and form aggregates, which do not possess the desirable properties associated with
Shijia Zhao et al.
Nanoscale, 7(5), 1984-1993 (2014-12-30)
Hydrogenated carbon nanomaterials exhibit many advantages in both mechanical and electrochemical properties, and thus have a wide range of potential applications. However, methods to control the hydrogenation and the effect of hydrogenation on the microstructure and properties of the produced
Jiangfeng Qian et al.
Nature communications, 6, 6362-6362 (2015-02-24)
Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the

Articles

Research and development of solid-state lithium fast-ion conductors is crucial because they can be potentially used as solid electrolytes in all-solid-state batteries, which may solve the safety and energy-density related issues of conventional lithium-ion batteries that use liquid (farmable organic) electrolytes.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service