Przejdź do zawartości
Merck
  • Mevastatin ameliorates sphingosine 1-phosphate-induced COX-2/PGE2-dependent cell migration via FoxO1 and CREB phosphorylation and translocation.

Mevastatin ameliorates sphingosine 1-phosphate-induced COX-2/PGE2-dependent cell migration via FoxO1 and CREB phosphorylation and translocation.

British journal of pharmacology (2015-09-12)
Chih-Kai Hsu, Chih-Chung Lin, Li-Der Hsiao, Chuen-Mao Yang
ABSTRAKT

Sphingosine 1-phosphate (S1P), an important inflammatory mediator, has been shown to regulate COX-2 production and promote various cellular responses such as cell migration. Mevastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA), effectively inhibits inflammatory responses. However, the mechanisms underlying S1P-evoked COX-2-dependent cell migration, which is modulated by mevastatin in human tracheal smooth muscle cells (HTSMCs) remain unclear. The expression of COX-2 was determined by Western blotting, real time-PCR and promoter analyses. The signalling molecules were investigated by pretreatment with respective pharmacological inhibitors or transfection with siRNAs. The interaction between COX-2 promoter and transcription factors was determined by chromatin immunoprecipitation assay. Finally, the effect of mevastatin on HTSMC migration and leukocyte counts in BAL fluid and COX-2 expression induced by S1P was determined by a cell migration assay, cell counting and Western blot. S1P stimulated mTOR activation through the Nox2/ROS and PI3K/Akt pathways, which can further stimulate FoxO1 phosphorylation and translocation to the cytosol. We also found that S1P induced CREB activation and translocation via an mTOR-independent signalling pathway. Finally, we showed that pretreatment with mevastatin markedly reduced S1P-induced cell migration and COX-2/PGE2 production via a PPARγ-dependent signalling pathway. Mevastatin attenuates the S1P-induced increased expression of COX-2 and cell migration via the regulation of FoxO1 and CREB phosphorylation and translocation by PPARγ in HTSMCs. Mevastatin could be beneficial for prevention of airway inflammation in the future.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
2′,7′-Bis(2-carboxyethyl)-5(6)-carboxyfluorescein, ≥90% (HPLC)
Sigma-Aldrich
GW9662, >98% (HPLC)
Sigma-Aldrich
Rapamycin, Ready Made Solution, 2.5 mg/mL in DMSO (2.74 mM), from Streptomyces hygroscopicus
Sigma-Aldrich
Mevastatin, ≥98% (HPLC), powder or crystals