コンテンツへスキップ
Merck

Polyglutamine tracts regulate beclin 1-dependent autophagy.

Nature (2017-04-27)
Avraham Ashkenazi, Carla F Bento, Thomas Ricketts, Mariella Vicinanza, Farah Siddiqi, Mariana Pavel, Ferdinando Squitieri, Maarten C Hardenberg, Sara Imarisio, Fiona M Menzies, David C Rubinsztein
要旨

Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, such as huntingtin in Huntington's disease and ataxin 3 in spinocerebellar ataxia type 3 (SCA3). Age at onset of disease decreases with increasing polyglutamine length in these proteins and the normal length also varies. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs in vivo as a result of alternative splicing, causes toxicity. Although such mutant proteins are prone to aggregation, toxicity is also associated with soluble forms of the proteins. The function of the polyQ tracts in many normal cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 3 (refs 7, 8), which is widely expressed in the brain. Here we show that the polyQ domain enables wild-type ataxin 3 to interact with beclin 1, a key initiator of autophagy. This interaction allows the deubiquitinase activity of ataxin 3 to protect beclin 1 from proteasome-mediated degradation and thereby enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell lines and mouse primary neurons, and in vivo in mice. This activity of ataxin 3 and its polyQ-mediated interaction with beclin 1 was competed for by other soluble proteins with polyQ tracts in a length-dependent fashion. This competition resulted in impairment of starvation-induced autophagy in cells expressing mutant huntingtin exon 1, and this impairment was recapitulated in the brains of a mouse model of Huntington's disease and in cells from patients. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin 3 itself. Our data thus describe a specific function for a wild-type polyQ tract that is abrogated by a competing longer polyQ mutation in a disease protein, and identify a deleterious function of such mutations distinct from their propensity to aggregate.

材料
製品番号
ブランド
製品内容

Millipore
抗FLAG® M2抗体 アフィニティーゲル, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
モノクローナル抗FLAG® M2抗体 マウス宿主抗体, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
3×FLAG®ペプチド, lyophilized powder
Sigma-Aldrich
モノクロナール抗α-チューブリン マウス宿主抗体, clone DM1A, ascites fluid
Sigma-Aldrich
抗アクチン ウサギ宿主抗体, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
抗ハンチンチンタンパク質抗体、クローンmEM48, culture supernatant, clone mEM48, Chemicon®
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
抗脊髄小脳失調3型抗体、クローン1H9, ascites fluid, clone 1H9, Chemicon®
Sigma-Aldrich
抗ポリグルタミン伸長疾患マーカー抗体、クローン5TF1-1C2, ascites fluid, clone 5TF1-1C2, Chemicon®
Sigma-Aldrich
MISSION® esiRNA, targeting human ATXN3