コンテンツへスキップ
Merck
  • Redox inactive metal ion triggered N-dealkylation by an iron catalyst with dioxygen activation: a lesson from lipoxygenases.

Redox inactive metal ion triggered N-dealkylation by an iron catalyst with dioxygen activation: a lesson from lipoxygenases.

Dalton transactions (Cambridge, England : 2003) (2015-05-06)
Jisheng Zhang, Yujuan Wang, Nengchao Luo, Zhuqi Chen, Kangbing Wu, Guochuan Yin
要旨

Utilization of dioxygen as the terminal oxidant at ambient temperature is always a challenge in redox chemistry, because it is hard to oxidize a stable redox metal ion like iron(III) to its high oxidation state to initialize the catalytic cycle. Inspired by the dioxygenation and co-oxidase activity of lipoxygenases, herein, we introduce an alternative protocol to activate the sluggish iron(III) species with non-redox metal ions, which can promote its oxidizing power to facilitate substrate oxidation with dioxygen, thus initializing the catalytic cycle. In oxidations of N,N-dimethylaniline and its analogues, adding Zn(OTf)2 to the [Fe(TPA)Cl2]Cl catalyst can trigger the amine oxidation with dioxygen, whereas [Fe(TPA)Cl2]Cl alone is very sluggish. In stoichiometric oxidations, it has also been confirmed that the presence of Zn(OTf)2 can apparently improve the electron transfer capability of the [Fe(TPA)Cl2]Cl complex. Experiments using different types of substrates as trapping reagents disclosed that the iron(IV) species does not occur in the catalytic cycle, suggesting that oxidation of amines is initialized by electron transfer rather than hydrogen abstraction. Combined experiments from UV-Vis, high resolution mass spectrometry, electrochemistry, EPR and oxidation kinetics support that the improved electron transfer ability of iron(III) species originates from its interaction with added Lewis acids like Zn(2+) through a plausible chloride or OTf(-) bridge, which has promoted the redox potential of iron(III) species. The amine oxidation mechanism was also discussed based on the available data, which resembles the co-oxidase activity of lipoxygenases in oxidative dealkylation of xenobiotic metabolisms where an external electron donor is not essential for dioxygen activation.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
アセトニトリル, anhydrous, 99.8%
Sigma-Aldrich
トルエン, anhydrous, 99.8%
Sigma-Aldrich
スチレン, ReagentPlus®, contains 4-tert-butylcatechol as stabilizer, ≥99%
Sigma-Aldrich
N,N-ジメチルアニリン, ReagentPlus®, 99%
Sigma-Aldrich
トリフルオロメタンスルホン酸銅(II), 98%
Sigma-Aldrich
トリフルオロメタンスルホン酸ナトリウム, 98%
Sigma-Aldrich
2-ピコリルアミン, 99%
Sigma-Aldrich
1,4-シクロヘキサジエン, 97%
Sigma-Aldrich
N-メチルアニリン, ≥99%
Sigma-Aldrich
ジフェニルメタン, 99%
Sigma-Aldrich
アセトニトリル 溶液, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
N-メチルアニリン, 98%
Sigma-Aldrich
4-ブロモ-N,N-ジメチルアニリン, 97%
Sigma-Aldrich
アセトニトリル 溶液, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
チオアニソール, ReagentPlus®, ≥99%
Sigma-Aldrich
アセトニトリル, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
トルエン, SAJ first grade, ≥99.0%
Sigma-Aldrich
N,N-ジメチルアニリン, purified by redistillation, ≥99.5%
Sigma-Aldrich
N-メチルホルムアニリド, 99%
Sigma-Aldrich
アセトニトリル, ≥99.8%, suitable for HPLC
Sigma-Aldrich
トルエン, JIS special grade, ≥99.5%
Sigma-Aldrich
アセトニトリル, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
1,4-シクロヘキサジエン, purum, ≥97.0% (GC)
Sigma-Aldrich
アセトニトリル, JIS special grade, ≥99.5%
Sigma-Aldrich
アセトニトリル, ≥99.5%, ACS reagent
Sigma-Aldrich
アセトニトリル 溶液, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
トルエン, suitable for HPLC, ≥99.9%