コンテンツへスキップ
Merck
  • Online open-tubular fractionation scheme coupled with push-pull perfusion sampling for profiling extravasation of gold nanoparticles in a mouse tumor model.

Online open-tubular fractionation scheme coupled with push-pull perfusion sampling for profiling extravasation of gold nanoparticles in a mouse tumor model.

Journal of chromatography. A (2015-05-26)
Cheng-Kuan Su, Po-Jen Tseng, Meng-Han Lin, Hsien-Ting Chiu, Andrea del Vall, Yu-Fen Huang, Yuh-Chang Sun
要旨

The extravasation of administered nano-drug carriers is a critical process for determining their distributions in target and non-target organs, as well as their pharmaceutical efficacies and side effects. To evaluate the extravasation behavior of gold nanoparticles (AuNPs), currently the most popular drug delivery system, in a mouse tumor model, in this study we employed push-pull perfusion (PPP) as a means of continuously sampling tumor extracellular AuNPs. To facilitate quantification of the extravasated AuNPs through inductively coupled plasma mass spectrometry, we also developed a novel online open-tubular fractionation scheme to allow interference-free determination of the sampled extracellular AuNPs from the coexisting biological matrix. After optimizing the flow-through volume and flow rate of this proposed fractionation scheme, we found that (i) the system's temporal resolution was 7.5h(-1), (ii) the stability presented by the coefficient of variation was less than 10% (6-h continuous measurement), and (iii) the detection limits for the administered AuNPs were in the range 0.057-0.068μgL(-1). Following an intravenous dosage of AuNPs (0.3mgkg(-1) body weight), in vivo acquired profiles indicated that the pegylated AuNPs (PEG-AuNPs) had greater tendency toward extravasating into the tumor extracellular space. We also observed that the accumulation of nanoparticles in the whole tumor tissues was higher for PEG-AuNPs than for non-pegylated ones. Overall, pegylation appears to promote the extravasation and accumulation of AuNPs for nano-drug delivery applications.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
硝酸, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
塩酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
塩酸, 36.5-38.0%, BioReagent, for molecular biology
Supelco
塩酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
塩酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
リン酸緩衝生理食塩水, powder, pH 7.4, for preparing 5 L solutions
Sigma-Aldrich
塩酸 溶液, 1 M
Sigma-Aldrich
塩酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
硝酸, JIS special grade, 60.0-61.0%, density: 1.38
Sigma-Aldrich
塩酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
塩酸 溶液, 0.1 M
Sigma-Aldrich
塩酸 溶液, 6 M
Sigma-Aldrich
塩酸 溶液, 12 M
Sigma-Aldrich
塩化水素 溶液, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
塩酸 溶液, 2 M
Sigma-Aldrich
塩酸 溶液, 0.5 M
Sigma-Aldrich
硝酸, SAJ first grade, 60.0-62.0%, density: 1.38
Sigma-Aldrich
硝酸, 60.0-62.0%, suitable for determination of toxic metals, density: 1.38
Sigma-Aldrich
塩酸 溶液, 0.2 M
Sigma-Aldrich
硝酸, 1 M
Sigma-Aldrich
硝酸, JIS special grade, 69.0-70.0%, density: 1.42
Sigma-Aldrich
硝酸, SAJ first grade, 69-70%, density: 1.42
Sigma-Aldrich
硝酸, ACS reagent, ≥90.0%
Sigma-Aldrich
塩酸 溶液, 0.01 M
Sigma-Aldrich
硝酸, 0.1 M
Sigma-Aldrich
塩酸 溶液, 0.05 M
Sigma-Aldrich
塩酸 溶液, 0.02 M
Sigma-Aldrich
塩酸, suitable for determination of toxic metals, ≥35.0%
Sigma-Aldrich
塩酸, SAJ super special grade, ≥35.0%
Sigma-Aldrich
硝酸, JIS special grade, ≥97.0%, fuming, density: 1.52