コンテンツへスキップ
Merck
  • Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

Journal of experimental botany (2015-02-26)
Enkhtuul Tsogtbaatar, Jean-Christophe Cocuron, Marcos Corchado Sonera, Ana Paula Alonso
要旨

Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
塩酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
塩酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
クロロトリメチルシラン, ≥98.0% (GC)
Supelco
塩酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
クロロトリメチルシラン, purified by redistillation, ≥99%
Sigma-Aldrich
塩酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
ジクロロメタン, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
塩酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
トルエン, anhydrous, 99.8%
Sigma-Aldrich
塩酸 溶液, 1 M
Sigma-Aldrich
水酸化カリウム, anhydrous, ≥99.95% trace metals basis
Sigma-Aldrich
塩酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
塩酸 溶液, 0.1 M
Sigma-Aldrich
無水酢酸, 99.5%
Sigma-Aldrich
塩酸 溶液, 6 M
Sigma-Aldrich
塩酸 溶液, 12 M
Sigma-Aldrich
塩化水素 溶液, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
無水酢酸, ReagentPlus®, ≥99%
Sigma-Aldrich
塩酸 溶液, 2 M
Supelco
N-メチル-ビス(トリフルオロアセトアミド), for GC derivatization, LiChropur, ≥97.0% (GC)
Sigma-Aldrich
塩酸 溶液, 0.5 M
Sigma-Aldrich
トルエン, SAJ first grade, ≥99.0%
Sigma-Aldrich
無水酢酸, ACS reagent, ≥98.0%
Sigma-Aldrich
水酸化カリウム 溶液, 0.5 M in ethanol
Sigma-Aldrich
水酸化カリウム 溶液, 1 M
Sigma-Aldrich
O-エチルヒドロキシルアミン 塩酸塩, 97%
Supelco
ジクロロメタン 溶液, contains 10 % (v/v) methanol
Sigma-Aldrich
ジクロロメタン, JIS special grade, ≥99.0%
Sigma-Aldrich
塩酸 溶液, 0.2 M
Sigma-Aldrich
トルエン, JIS special grade, ≥99.5%