コンテンツへスキップ
Merck

923192

Sigma-Aldrich

Spiro-TTB

greener alternative

≥99% (HPLC)

別名:

2,2′,7,7′- Tetrakis(N,N′-di-p-methylphenylamino)-9,9′-spirobifluorene, 2,2′,7,7′-Tetra(N, N-di-tolyl)amino-spiro-bifluorene, 2,2′,7,7′-Tetra(N,N-di-p-tolyl)amino-9,9-spirobifluorene, 2,2′,7,7′-Tetra(N,N-ditolylL)amino-9,9-spiro-bifluorene, 2,2′,7,7′-Tetrakis(di-p-tolylamino)-9,9′-spirobi[fluorene], 2,2′,7,7′-Tetrakis(di-p-tolylamino)spiro-9,9′-bifluorene, N2,N2,N2′,N2′,N7,N7,N7′,N7-Octa-p-tolyl-9,9′-spirobi[fluorene]-2,2′,7,7′-tetraamine

ログイン組織・契約価格を表示する


About This Item

実験式(ヒル表記法):
C81H68N4
CAS番号:
分子量:
1097.43
MDL番号:

詳細

PL:409 nm (in THF)
TGA:> 360 °C (0.5% weight loss)
Tg: 146 °C

品質水準

アッセイ

≥99% (HPLC)

分子量

average mol wt 1097.43 g/mol

環境により配慮した代替製品の特徴

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

損失

0.5% TGA, >360°C

転移温度

Tg 146 °C

溶解性

THF: soluble

λmax

385 nm in THF

軌道エネルギー

HOMO 5.2 eV 
LUMO 1.9 eV 

環境により配慮した代替製品カテゴリ

類似した製品をお探しですか? 訪問 製品比較ガイド

関連するカテゴリー

詳細

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to enabling category of greener alternatives, and has been enhanced for energy efficiency. Click here for more information.

アプリケーション

Spiro-TTB is a high-mobility organic semiconductor with strong donor character given its four substituted arylamine moieties that stabilize positively charged cationic states via mesomeric effects.
It has been successfully applied as transparent hole-transparent layer in solar cells, organic field-effect transistors (OFETs), and organic light emitting devices (OLEDs). In photovoltaics, spiro-TTB was used as organic hole selective layer between perovskite and the silicon cells, contributing to a 25.2% efficency perovskite/ silicon tandem solar cell. When used in OLEDs, spiro-TTB enabled applications in organic photodetectors (OPDs), imaging and lasing applications.
Spiro-TTB is used as a hole transport material in OLED devices, organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and perovskite solar cells. It exhibits excellent hole injection and transport properties, enabling efficient charge transport from the anode to the emitting layers of the OLED structure. This contributes to improved device performance, stability, and overall efficiency.

保管分類コード

11 - Combustible Solids

WGK

WGK 3

引火点(°F)

Not applicable

引火点(℃)

Not applicable


適用法令

試験研究用途を考慮した関連法令を主に挙げております。化学物質以外については、一部の情報のみ提供しています。 製品を安全かつ合法的に使用することは、使用者の義務です。最新情報により修正される場合があります。WEBの反映には時間を要することがあるため、適宜SDSをご参照ください。

労働安全衛生法名称等を表示すべき危険物及び有害物

名称等を表示すべき危険物及び有害物

労働安全衛生法名称等を通知すべき危険物及び有害物

名称等を通知すべき危険物及び有害物


試験成績書(COA)

製品のロット番号・バッチ番号を入力して、試験成績書(COA) を検索できます。ロット番号・バッチ番号は、製品ラベルに「Lot」または「Batch」に続いて記載されています。

以前この製品を購入いただいたことがある場合

文書ライブラリで、最近購入した製品の文書を検索できます。

文書ライブラリにアクセスする

Yucheng Liu et al.
Advanced materials (Deerfield Beach, Fla.), 33(8), e2006010-e2006010 (2021-01-22)
Low ionic migration is required for a semiconductor material to realize stable high-performance X-ray detection. In this work, successful controlled incorporation of not only methylammonium (MA+ ) and cesium (Cs+ ) cations, but also bromine (Br- ) anions into the
Caroline Murawski et al.
Advanced materials (Deerfield Beach, Fla.), 31(42), e1903599-e1903599 (2019-09-06)
Fluorescence imaging is an indispensable tool in biology, with applications ranging from single-cell to whole-animal studies and with live mapping of neuronal activity currently receiving particular attention. To enable fluorescence imaging at cellular scale in freely moving animals, miniaturized microscopes
Plasmon-Induced Sub-Bandgap Photodetection with Organic Schottky Diodes.
Hou J L, et al.
Advances in Functional Materials, 26, 5741-5747 (2016)
Hyperbranched Polymers with High Transparency and Inherent High Refractive Index for Application in Organic Light-Emitting Diodes.
Wei Q, et al.
Advances in Functional Materials, 26, 2545-2553 (2016)
Florent Sahli et al.
Nature materials, 17(9), 820-826 (2018-06-13)
Tandem devices combining perovskite and silicon solar cells are promising candidates to achieve power conversion efficiencies above 30% at reasonable costs. State-of-the-art monolithic two-terminal perovskite/silicon tandem devices have so far featured silicon bottom cells that are polished on their front

ライフサイエンス、有機合成、材料科学、クロマトグラフィー、分析など、あらゆる分野の研究に経験のあるメンバーがおります。.

製品に関するお問い合わせはこちら(テクニカルサービス)