Skip to Content
Merck
  • Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function.

Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function.

Toxicology and applied pharmacology (2014-06-27)
Xin Jiang, Yang Bai, Zhiguo Zhang, Ying Xin, Lu Cai
ABSTRACT

Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5mg/kg daily in five days of each week for 3months and then kept until 6months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3months, and the protective effect could be sustained at 3months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
USP
Dimethyl sulfoxide, United States Pharmacopeia (USP) Reference Standard
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Supelco
Dimethyl sulfoxide, analytical standard
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC
Sigma-Aldrich
Dimethyl sulfoxide solution, 50 wt. % in H2O
Sigma-Aldrich
Dimethyl sulfoxide, JIS special grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, SAJ first grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.0%, suitable for absorption spectrum analysis
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Anti-PCNA antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution