Passa al contenuto
Merck
  • FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.

FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target.

Radiation research (2015-10-22)
Janet K Horton, Sharareh Siamakpour-Reihani, Chen-Ting Lee, Ying Zhou, Wei Chen, Joseph Geradts, Diane R Fels, Peter Hoang, Kathleen A Ashcraft, Jeff Groth, Hsiu-Ni Kung, Mark W Dewhirst, Jen-Tsan A Chi
ABSTRACT

Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in radioresistant basal cell lines. Our findings suggest that cell-type-specific, radiation-induced FAS contributes to subtype-specific breast cancer radiation response and that activation of FAS pathways may be exploited for biologically tailored radiotherapy.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Glicerolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Glicerolo, for molecular biology, ≥99.0%
Sigma-Aldrich
Cocktail di inibitori delle proteasi, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
Glicerolo, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Sodio dodecil solfato, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
2-mercaptoetanolo, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-mercaptoetanolo, ≥99.0%
Sigma-Aldrich
Sodio dodecil solfato, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodio cloruro, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, for molecular biology, ~1 M in H2O
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Sodio dodecil solfato, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodio cloruro, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
2-mercaptoetanolo, BioUltra, for molecular biology, ≥99.0% (GC)
SAFC
Sodio cloruro, 5 M
Sigma-Aldrich
Glicerolo, 83.5-89.5% (T)
Sigma-Aldrich
Sodio dodecil solfato, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Glicerolo, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glicerolo, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Sodio dodecil solfato, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodio cloruro, 99.999% trace metals basis
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Glicerolo, FCC, FG
Supelco
Sodio dodecil solfato, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)