跳转至内容
Merck
  • High-affinity accumulation of a maytansinoid in cells via weak tubulin interaction.

High-affinity accumulation of a maytansinoid in cells via weak tubulin interaction.

PloS one (2015-02-12)
Victor S Goldmacher, Charlene A Audette, Yinghua Guan, Eriene-Heidi Sidhom, Jagesh V Shah, Kathleen R Whiteman, Yelena V Kovtun
摘要

The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4-6 × 10(7) copies). Efflux of 3[H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯仿, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
氯仿, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
氯仿, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
3-吗啉丙磺酸, ≥99.5% (titration)
Sigma-Aldrich
氯仿, suitable for HPLC, ≥99.8%, amylene stabilized
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, for molecular biology, ≥97.0%
Sigma-Aldrich
氯仿, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
3-吗啉丙磺酸, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
氯仿, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
氯仿, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
诺考达唑, ≥99% (TLC), powder
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
氯仿, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
氯仿, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
3-吗啉丙磺酸, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
氯仿, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Vinblastine sulfate salt, ≥97% (HPLC)
Sigma-Aldrich
抗-α微管蛋白抗体,小鼠单克隆抗体, clone B-5-1-2, purified from hybridoma cell culture
Sigma-Aldrich
1,2-二油酰--甘油基-3-磷酸胆碱, lyophilized powder
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
氯仿, JIS special grade, ≥99.0%
Sigma-Aldrich
氩, ≥99.998%
Sigma-Aldrich
地美可辛, ≥98% (HPLC)
SAFC
3-吗啉丙磺酸
Sigma-Aldrich
氯仿, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
氯仿, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer