跳转至内容
Merck
  • Estradiol modulates translocator protein (TSPO) and steroid acute regulatory protein (StAR) via protein kinase A (PKA) signaling in hypothalamic astrocytes.

Estradiol modulates translocator protein (TSPO) and steroid acute regulatory protein (StAR) via protein kinase A (PKA) signaling in hypothalamic astrocytes.

Endocrinology (2014-06-01)
Claire Chen, John Kuo, Angela Wong, Paul Micevych
摘要

The ability of the central nervous system to synthesize steroid hormones has wide-ranging implications for physiology and pathology. Among the proposed roles of neurosteroids is the regulation of the LH surge. This involvement in the estrogen-positive feedback demonstrates the integration of peripheral steroids with neurosteroids. Within the female hypothalamus, estradiol from developing follicles stimulates progesterone synthesis in astrocytes, which activate neural circuits regulating gonadotropin (GnRH) neurons. Estradiol acts at membrane estrogen receptor-α to activate cellular signaling that results in the release of inositol trisphosphate-sensitive calcium stores that are sufficient to induce neuroprogesterone synthesis. The purpose of the present studies was to characterize the estradiol-induced signaling leading to activation of steroid acute regulatory protein (StAR) and transporter protein (TSPO), which mediate the rate-limiting step in steroidogenesis, ie, the transport of cholesterol into the mitochondrion. Treatment of primary cultures of adult female rat hypothalamic astrocytes with estradiol induced a cascade of phosphorylation that resulted in the activation of a calcium-dependent adenylyl cyclase, AC1, elevation of cAMP, and activation of both StAR and TSPO. Blocking protein kinase A activation with H-89 abrogated the estradiol-induced neuroprogesterone synthesis. Thus, together with previous results, these experiments completed the characterization of how estradiol action at the membrane leads to the augmentation of neuroprogesterone synthesis through increasing cAMP, activation of protein kinase A, and the phosphorylation of TSPO and StAR in hypothalamic astrocytes.

材料
货号
品牌
产品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
二乙醚, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
二乙醚, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
二乙醚, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
3-异丁基-1-甲基黄嘌呤, ≥99% (HPLC), powder
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
2,2,4-三甲基戊烷, ACS reagent, ≥99.0%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
3-异丁基-1-甲基黄嘌呤, ≥99%, BioUltra
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
L-谷氨酰胺, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
2,2,4-三甲基戊烷, suitable for HPLC, ≥99%
Sigma-Aldrich
β-雌二醇, BioReagent, powder, suitable for cell culture
Sigma-Aldrich
2,2,4-三甲基戊烷, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.5%
Sigma-Aldrich
二乙醚, contains BHT as inhibitor, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
β-雌二醇, ≥98%
Sigma-Aldrich
甲醇, Absolute - Acetone free
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%