跳转至内容
Merck
  • Contribution of oxidative stress to the degeneration of rotator cuff entheses.

Contribution of oxidative stress to the degeneration of rotator cuff entheses.

Journal of shoulder and elbow surgery (2014-04-22)
Daichi Morikawa, Yoshiaki Itoigawa, Hidetoshi Nojiri, Hirotaka Sano, Eiji Itoi, Yoshifumi Saijo, Kazuo Kaneko, Takahiko Shimizu
摘要

Rotator cuff degeneration is one of the multiple factors that lead to rotator cuff tears; however, the precise mechanism of such degeneration still remains unclear. In this study, we investigated the supraspinatus tendon enthesis to clarify the link between rotator cuff degeneration and oxidative stress in antioxidant enzyme superoxide dismutase 1 (Sod1)-deficient mice (Sod1(-/-)). The supraspinatus tendon and humeral head were isolated and fixed to prepare histologic sections from wild-type and Sod1(-/-) male mice at 20 weeks of age. Hematoxylin-eosin staining was performed to assess the histomorphologic structure. To investigate the collagen fibers, we examined spatially aligned collagen fibers using a polarizing microscope and assessed the amount of collagen using immunohistochemical staining. To analyze the tissue elasticity, we measured the tissue acoustic properties using scanning acoustic microscopy. The Sod1(-/-) mice showed histologic changes, such as a misaligned 4-layered structure and fragmented tidemark, in the enthesis. Sod1 loss also decreased the amount of brightly diffracted light and type I collagen, indicating collagen downregulation. The scanning acoustic microscopy analysis showed that the speed and attenuation of sound were increased in the nonmineralized fibrocartilage of the Sod1(-/-) mice, suggesting decreased mechanical properties in the supraspinatus enthesis. Sod1 deficiency-induced degeneration is associated with impaired elasticity in the supraspinatus tendon enthesis, recapitulating human rotator cuff degeneration. These results suggest that intracellular oxidative stress contributes to the degeneration of rotator cuff entheses.

材料
货号
品牌
产品描述

Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
I型胶原蛋白 溶液 来源于大鼠尾, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, powder
Sigma-Aldrich
胶原蛋白 来源于大鼠尾, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于小牛皮, Bornstein and Traub Type I, solid, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原 来源于牛跟腱, powder, suitable for substrate for collagenase
Sigma-Aldrich
胶原蛋白 来源于小牛皮, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白IV型 来源于人类细胞培养基, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于鸡胸软骨, Type II (Miller), powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
胶原 人, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
胶原 来源于牛气管软骨, Bornstein and Traub Type II, powder
Sigma-Aldrich
胶原蛋白 来源于 Engelbreth-Holm-Swarm 小鼠肉瘤基底膜, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
胶原蛋白 来源于牛鼻中隔, Bornstein and Traub Type II, powder