Passa al contenuto
Merck
  • Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.

Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression.

Oncotarget (2015-10-21)
Balkrishna Chaube, Parmanand Malvi, Shivendra Vikram Singh, Naoshad Mohammad, Avtar Singh Meena, Manoj Kumar Bhat
ABSTRACT

Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
D-(+)-Glucosio, ≥99.5% (GC)
Sigma-Aldrich
Streptozocina, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
D-(+)-Glucosio, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Sodium fluoride, ACS reagent, ≥99%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Sodio cloruro, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodio cloruro, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodio cloruro, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Fenil metansolfonile fluoruro, ≥98.5% (GC)
Sigma-Aldrich
Sodio cloruro, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
D-(+)-Glucosio, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
2-deossi-D-glucosio, ≥98% (GC), crystalline
Sigma-Aldrich
Rotenone, ≥95%
Sigma-Aldrich
D-(+)-Glucosio, ≥99.5% (GC), BioXtra
SAFC
Sodio cloruro, 5 M
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium pyrophosphate tetrabasic, ≥95%
Sigma-Aldrich
2-deossi-D-glucosio, ≥99% (GC), crystalline
Sigma-Aldrich
Sodium orthovanadate, ≥90% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
D-(+)-Glucosio, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Fenil metansolfonile fluoruro, ≥99.0% (T)
Sigma-Aldrich
Sodio cloruro, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium fluoride, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium orthovanadate, 99.98% trace metals basis
Supelco
D-(+)-Glucosio, analytical standard
Sigma-Aldrich
Sodium fluoride, 99.99% trace metals basis
Sigma-Aldrich
Decylubiquinone, ≥97% (HPLC)