Passa al contenuto
Merck

Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

Journal of chemical ecology (2014-12-06)
Charles J Mason, Kennedy F Rubert-Nason, Richard L Lindroth, Kenneth F Raffa
ABSTRACT

Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Acido formico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acido formico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Acido formico, ACS reagent, ≥88%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acido formico, ≥95%, FCC, FG
Sigma-Aldrich
D-(−)-Salicin, ≥99% (GC)
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Salicylic acid-d6, 98 atom % D, 99% (CP)
Sigma-Aldrich
Acetonitrile, for preparative HPLC, ≥99.8% (GC)
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Salicin, European Pharmacopoeia (EP) Reference Standard
Supelco
D-(−)-Salicin, analytical standard