Passa al contenuto
Merck
  • Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii.

Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii.

PloS one (2015-03-19)
Anne Bouchut, Aarti R Chawla, Victoria Jeffers, Andy Hudmon, William J Sullivan
ABSTRACT

Lysine acetylation is a reversible post-translational modification (PTM) that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT) and deacetylase (KDAC) genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acido trifluoroacetico, ReagentPlus®, 99%
Sigma-Aldrich
Acido trifluoroacetico, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Acido cloridrico, ACS reagent, 37%
Sigma-Aldrich
Acido cloridrico, ACS reagent, 37%
Sigma-Aldrich
Cloruro di idrogeno, 4.0 M in dioxane
Sigma-Aldrich
Acido trifluoroacetico, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Acido cloridrico, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acido cloridrico, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Acido cloridrico, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Acido cloridrico, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Cloruro di idrogeno, 2.0 M in diethyl ether
Sigma-Aldrich
Acido cloridrico, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Acido trifluoroacetico, ≥99%, for protein sequencing
Supelco
Acido cloridrico, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Anticorpo anti-α-tubulina, monoclonale murino, clone DM1A, purified from hybridoma cell culture
Sigma-Aldrich
Cloruro di idrogeno, 1.0 M in diethyl ether
Sigma-Aldrich
Acido cloridrico, puriss., 24.5-26.0%
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Acido cloridrico, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Cloruro di idrogeno, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Acido cloridrico, 32 wt. % in H2O, FCC
Sigma-Aldrich
Cloruro di idrogeno, 1.0 M in acetic acid
Supelco
Acido trifluoroacetico, analytical standard
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur