Pular para o conteúdo
Merck
  • Attenuation of urokinase activity during experimental ischaemia protects the cerebral barrier from damage through regulation of matrix metalloproteinase-2 and NAD(P)H oxidase.

Attenuation of urokinase activity during experimental ischaemia protects the cerebral barrier from damage through regulation of matrix metalloproteinase-2 and NAD(P)H oxidase.

The European journal of neuroscience (2014-03-22)
Kamini Rakkar, Kirtiman Srivastava, Ulvi Bayraktutan
RESUMO

Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ácido sulfúrico, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ácido sulfúrico, 99.999%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Antiβ-actina monoclonal, clone AC-15, ascites fluid
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ácido sulfúrico, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Ácido sulfúrico, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Ácido sulfúrico, puriss. p.a., ≥25% (T)
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Supelco
Ácido sulfúrico, 0.1 M H2SO4 in water (0.2N), eluent concentrate for IC
Sigma-Aldrich
Metanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Supelco
Metanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Metanol, analytical standard
Supelco
Ácido sulfúrico, for the determination of nitrogen, ≥97.0%
Sigma-Aldrich
Metanol, NMR reference standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C