Pular para o conteúdo
Merck

Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-04-17)
Matthew J Kan, Jennifer E Lee, Joan G Wilson, Angela L Everhart, Candice M Brown, Andrew N Hoofnagle, Marilyn Jansen, Michael P Vitek, Michael D Gunn, Carol A Colton
RESUMO

The pathogenesis of Alzheimer's disease (AD) is a critical unsolved question; and although recent studies have demonstrated a strong association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition, hyperphosphorylated and aggregated tau, behavioral changes, and age-dependent hippocampal neuronal loss. Using this mouse model, we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology is driven by proinflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of hippocampal neuronal death are associated with the presence of immunosuppressive CD11c(+) microglia and extracellular arginase, resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism mediating the age-dependent and regional loss of neurons in humans with AD.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Cloreto de potássio, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Ácido fórmico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Cloreto de potássio, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E508, 99-100.5% (AT), ≤0.0001% Al
Sigma-Aldrich
Cloreto de potássio, for molecular biology, ≥99.0%
Sigma-Aldrich
Cloreto de potássio, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Ácido fórmico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
L-Arginina, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Cloreto de potássio, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥88%
Sigma-Aldrich
Cloreto de potássio, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Cloreto de potássio, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Cloreto de potássio, puriss. p.a., ≥99.5% (AT)
Sigma-Aldrich
L-Citrulline, ≥98% (TLC)
Sigma-Aldrich
Cloreto de potássio, BioUltra, for molecular biology, ≥99.5% (AT)
SAFC
L-Arginina
Sigma-Aldrich
Cloreto de potássio, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Cloreto de potássio, 99.999% trace metals basis
Sigma-Aldrich
Aphidicolin from Nigrospora sphaerica, ≥98% (HPLC), powder
Sigma-Aldrich
L-Arginina, 99%, FCC, FG
Sigma-Aldrich
Ácido fórmico, ≥95%, FCC, FG
Sigma-Aldrich
L-Arginina, reagent grade, ≥98%
Sigma-Aldrich
Cloreto de potássio, ≥99.99% trace metals basis
Supelco
Potassium chloride solution, for Ag/AgCl electrodes, ~3 M KCl, saturated with silver chloride
Sigma-Aldrich
Cloreto de potássio, BioXtra, ≥99.0%
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Supelco
Cloreto de potássio, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Cloreto de potássio, 1 M KCl
Sigma-Aldrich
Cloreto de potássio, AnhydroBeads, −10 mesh, 99.999% trace metals basis