Pular para o conteúdo
Merck
  • Development and validation of a HILIC-MS/MS method for quantification of decitabine in human plasma by using lithium adduct detection.

Development and validation of a HILIC-MS/MS method for quantification of decitabine in human plasma by using lithium adduct detection.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2014-08-30)
Wenyi Hua, Thomas Ierardi, Michael Lesslie, Brian T Hoffman, Daniel Mulvana
RESUMO

A highly sensitive, selective, and rugged quantification method was developed and validated for decitabine (5-aza-2'-deoxycytidine) in human plasma treated with 100μg/mL of tetrahydrouridine (THU). Chromatographic separation was accomplished using hydrophilic interaction liquid chromatography (HILIC) and detection used electrospray ionization (ESI) tandem mass spectrometry (MS/MS) by monitoring lithiated adducts of the analytes as precursor ions. The method involves simple acetonitrile precipitation steps (in an ice bath) followed by injection of the supernatant onto a Thermo Betasil Silica-100, 100×3.0mm, 5μm LC column. Protonated ([M+H](+)), sodiated ([M+Na](+)), and lithiated ([M+Li](+)) adducts as precursor ions for MS/MS detection were evaluated for best sensitivity and assay performance. During initial method development abundant sodium [M+Na](+) and potassium [M+K](+) adducts were observed while the protonated species [M+H](+) was present at a relative abundance of less than 5% in Q1. The alkali adducts were not be able to be minimized by the usual approach of increasing acid content in mobile phases. Significant analyte/internal standard (IS) co-suppression and inter-lot response differences were observed when using the sodium adduct as the precursor ion for quantification. By adding 2mM lithium acetate in aqueous mobile phase component, the lithium adduct effectively replaced other cationic species and was successfully used as the precursor ion for selected reaction monitoring (SRM) detection. The method demonstrated the separation of anomers and from other endogenous interferences using a 3-min gradient elution. Decitabine stock, working solution stabilities were investigated during method development. Three different peaks, including one from anomerization, were observed in the SRM transition of the analyte when it was in neutral aqueous solution. The assay was validated over a concentration range of 0.5-500ng/mL (or 0.44-440pg injected on column) in 50μL of human plasma. The accuracy and precision were within 8.6% relative error and 6.3% coefficient of variation, respectively. Decitabine was stable in THU treated human plasma for at least 68 days and after 5 freeze-thaw cycles when stored at -70°C. Stability of decitabine in THU treated human whole blood, matrix factor and recovery were also evaluated during method validation. The method was successfully used for clinical sample analysis.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Dimetilsulfóxido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, for molecular biology
Sigma-Aldrich
Dimetilsulfóxido, ACS reagent, ≥99.9%
Sigma-Aldrich
Ácido trifluoracético, ReagentPlus®, 99%
Sigma-Aldrich
Ácido trifluoracético, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Dimetilsulfóxido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
N,N-Dimetilformamida, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimetilformamida, suitable for HPLC, ≥99.9%
Sigma-Aldrich
N,N-Dimetilformamida, anhydrous, 99.8%
Sigma-Aldrich
Ácido fórmico, reagent grade, ≥95%
Sigma-Aldrich
Dimetilsulfóxido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimetilsulfóxido, anhydrous, ≥99.9%
Sigma-Aldrich
Dimetilsulfóxido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Ácido fórmico, ACS reagent, ≥96%
Sigma-Aldrich
Ácido fórmico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Ácido trifluoracético, puriss. p.a., suitable for HPLC, ≥99.0% (GC)