Pular para o conteúdo
Merck
  • Fine tuning of copper(II)-chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle.

Fine tuning of copper(II)-chlorophyll interactions in organic media. Metalation versus oxidation of the macrocycle.

Dalton transactions (Cambridge, England : 2003) (2015-02-28)
Łukasz Orzeł, Bartłomiej Szmyd, Dorota Rutkowska-Żbik, Leszek Fiedor, Rudi van Eldik, Grażyna Stochel
RESUMO

The nature of chlorophyll interactions with copper(II) ions varies considerably in organic solvents, depending on the dominant coordinative form. Besides formation of the metallo tetrapyrrolic complex, Cu(II) ions can cause oxidation of the pigment, reversible or irreversible, which can lead to the destruction of the macrocyclic structure. All these reaction types can be distinguished within a quite narrow range of reaction conditions. The ability to form new metallo derivatives in either metalation or transmetalation reactions is obviously limited by the concentration of the potential oxidant, but can be secured below this level via suitable composition of the reaction system. The decisive factor in the selection of a specific reaction pathway is the presence of a potential ligand that can affect the reactivity of Cu(II) for example by shifting its redox potential. Spectroscopic and electrochemical studies were performed in order to determine the predominant species of Cu(II) in methanol, nitromethane and acetonitrile in the presence of chloride and acetate ions, as well as to assign their appropriate oxidizing ability. This allowed us to estimate the boundary conditions for the electron transfer processes in chlorophyll-Cu(II) systems. Chlorophyll and its free base can undergo both types of electron transfer processes, however, they reveal different susceptibilities that make this class of ligands quite versatile markers in tuning the reactivity of metal ions in solutions.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Copper(II) acetate monohydrate, ACS reagent, ≥98%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ferrocene, 98%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Tetraethylammonium chloride, ≥98% (titration)
Sigma-Aldrich
Copper(II) trifluoromethanesulfonate, 98%
Supelco
Metanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Tetrabutylammonium acetate, 97%