Pular para o conteúdo
Merck

Prilling as manufacturing technique for multiparticulate lipid/PEG fixed-dose combinations.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2014-07-11)
A Vervaeck, T Monteyne, L Saerens, T De Beer, J P Remon, C Vervaet
RESUMO

This study focused on the evaluation of prilling as a technique for the manufacturing of multiparticulate dosage forms. Prills, providing controlled and immediate drug release, were processed and finally combined in capsules yielding a fixed-dose combination. Metoprolol tartrate (MPT) and hydrochlorothiazide (HCT) were used as controlled and immediate release model drugs, respectively. These drugs were embedded in matrices composed of fatty acids and polyethylene glycol (PEG). In order to tailor drug release from the prills, the type of fatty acid, the PEG molecular weight and the fatty acid/PEG ratio were varied. To provide controlled drug release, MPT was embedded in matrices containing PEG and behenic acid. Using different PEG molecular weights (PEG 4000, 6000 and 10,000), MPT release could be tailored over a wide range. To obtain immediate release, HCT was incorporated in matrices composed of PEG and stearic acid. Since high amounts (at least 60%) of PEG were needed for acceptable immediate release, HCT release was independent on PEG molecular weight. Solid state characterization revealed that MPT crystallinity was decreased, while HCT was molecularly dispersed throughout the matrix. Drug release of both MPT and HCT prills was stable during storage. Compared to a fixed-dose reference, oral co-administration of the MPT and HCT prills to dogs yielded a similar bioavailability for the HCT prills, while the MPT prills resulted in a significant higher bioavailability.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Stearic acid, Grade I, ≥98.5% (capillary GC)
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Stearic acid, ≥95%, FCC, FG
Sigma-Aldrich
Metanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Stearic acid, reagent grade, 95%
Supelco
Metanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Hydrochlorothiazide, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Metanol, analytical standard
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Supelco
Stearic acid, analytical standard
Sigma-Aldrich
Metanol, NMR reference standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Stearic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Hydrochlorothiazide, crystalline
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Supelco
L-Lysine monohydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material