M2909
Murashige and Skoog Modified Basal Salt Mixture
powder, suitable for plant cell culture
Sinônimo(s):
Murashige and Skoog Modified Basal Salt Mixture, w/o Ammonium Nitrate
Faça loginpara ver os preços organizacionais e de contrato
About This Item
Código UNSPSC:
12352207
NACRES:
NA.72
Produtos recomendados
Formulário
powder
Nível de qualidade
técnica(s)
cell culture | plant: suitable
aplicação(ões)
agriculture
temperatura de armazenamento
2-8°C
Aplicação
Murashige and Skoog Modified Basal Salt Mixture has been used:
- to promote root development for internode stem suckers
- to promote shoot growth for the calluses
- for low nitrogen (LN) treatment, for the growth of Arabidopsis thaliana
Murashige and Skoog medium is a widely used plant tissue culture growth medium. M&S Basal Medium contains macronutrients that include high levels of nitrate and organic additives such as agar, sugars, vitamins and growth regulators. Important growth regulators frequently added to M&S include IAA (auxin/morphogen) and the Kinetin (cytokinin/cell division promoter).
Variante da fórmula
Without NH4NO3
With the macro- and micronutrients described by Murashige and Skoog (1962).
Media Formulation
With the macro- and micronutrients described by Murashige and Skoog (1962).
Media Formulation
Nota de preparo
Murashige and Skoog medium can be reconstituted from powder or by combining products that are major components of complete M&S medium, such as macronutrient mixtures and vitamin mixtures. Murashige and Skoog Salt mixture (M2909) contain the macronutrients and micronutrients of the original classic formulation without ammonium nitrate. It can be combined with M&S vitamins or Gamborg′s vitamins and supplemented with sucrose, agar, auxins (IAA) and cytokinins (Kinetin) to generate a complete medium for growth plant tissue culture.
Palavra indicadora
Warning
Frases de perigo
Declarações de precaução
Classificações de perigo
Eye Irrit. 2 - Ox. Sol. 3
Código de classe de armazenamento
5.1B - Oxidizing hazardous materials
Classe de risco de água (WGK)
WGK 2
Ponto de fulgor (°F)
Not applicable
Ponto de fulgor (°C)
Not applicable
Escolha uma das versões mais recentes:
Já possui este produto?
Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.
Os clientes também visualizaram
Iron homeostasis alteration in transgenic tobacco overexpressing ferritin
Van WO, et al.
The Plant Journal, 17(1), 93-97 (1999)
Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes
Zale JM, et al.
Plant Cell, Tissue and Organ Culture, 76(3), 277-281 (2004)
Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence
Pourtau N, et al.
Planta, 219(5), 765-772 (2004)
Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots.
Gabriele B Monshausen et al.
The Plant cell, 21(8), 2341-2356 (2009-08-06)
Mechanical stimulation of plants triggers a cytoplasmic Ca(2+) increase that is thought to link the touch stimulus to appropriate growth responses. We found that in roots of Arabidopsis thaliana, external and endogenously generated mechanical forces consistently trigger rapid and transient
O Van Wuytswinkel et al.
The Plant journal : for cell and molecular biology, 17(1), 93-97 (1999-03-09)
Intracellular iron concentration requires tight control and is regulated both at the uptake and storage levels. Our knowledge of the role that the iron-storage protein ferritins play in plants is still very limited. Overexpression of this protein, either in the
Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.
Entre em contato com a assistência técnica