Pular para o conteúdo
Merck
Todas as fotos(1)

Documentos

900889

Sigma-Aldrich

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate

≥95%

Sinônimo(s):

LAP

Faça loginpara ver os preços organizacionais e de contrato


About This Item

Fórmula empírica (Notação de Hill):
C16H16LiO3P
Número CAS:
Peso molecular:
294.21
Código UNSPSC:
12352128

Nível de qualidade

Ensaio

≥95%

forma

crystalline powder

cor

white to off-white

temperatura de armazenamento

2-8°C

cadeia de caracteres SMILES

CC1=C(C(P(C2=CC=CC=C2)(O[Li])=O)=O)C(C)=CC(C)=C1

Categorias relacionadas

Aplicação

Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) is a water soluble, cytocompatible, Type I photoinitiator for use in the polymerization of hydrogels or other polymeric materials. This photoinitator is preferred over Irgacure 2959 for biological applications due to its increased water solubility, increased polymerization rates with 365 nm light, and absorbance at 400 nm allowing for polymerization with visible light. The improved polymerization kinetics enable cell encapsualation at reduced initiator concentration and longer wavelength light, which has been shown to reduce initiator toxicity and increase cell viability.

Características e benefícios

  • Superior water solubility
  • Biocompatible
  • Sensitiveto visible light

Código de classe de armazenamento

11 - Combustible Solids

Classe de risco de água (WGK)

WGK 3

Ponto de fulgor (°F)

Not applicable

Ponto de fulgor (°C)

Not applicable


Certificados de análise (COA)

Busque Certificados de análise (COA) digitando o Número do Lote do produto. Os números de lote e remessa podem ser encontrados no rótulo de um produto após a palavra “Lot” ou “Batch”.

Já possui este produto?

Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.

Visite a Biblioteca de Documentos

Benjamin D Fairbanks et al.
Macromolecules, 44(8), 2444-2450 (2011-04-23)
Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that
Benjamin D Fairbanks et al.
Biomaterials, 30(35), 6702-6707 (2009-09-29)
Due to mild reaction conditions and temporal and spatial control over material formation, photopolymerization has become a valuable technique for the encapsulation of living cells in three dimensional, hydrated, biomimetic materials. For such applications, 2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (I2959) is the most
Pui -Yan Lee et al.
Pharmaceutical research, 37(11), 220-220 (2020-10-15)
Gold porphyrin (AuP) is a complex that has been shown to be potent against various tumors. A biocompatible interpenetrating network (IPN) system comprised of polyethyleneglycol diacrylate (PEGdA) and chemically-modified gelatin has been shown to be an effective implantable drug depot
Juliana S Ribeiro et al.
Biomacromolecules, 21(9), 3945-3956 (2020-08-14)
Oral bacterial infection represents the leading cause of the gradual destruction of tooth and periodontal structures anchoring the teeth. Lately, injectable hydrogels have gained increased attention as a promising minimally invasive platform for localized delivery of personalized therapeutics. Here, an
Joshua D McCall et al.
Biomacromolecules, 13(8), 2410-2417 (2012-06-30)
Photoinitiated polymerization remains a robust method for fabrication of hydrogels, as these reactions allow facile spatial and temporal control of gelation and high compatibility for encapsulation of cells and biologics. The chain-growth reaction of macromolecular monomers, such as acrylated PEG

Artigos

The introduction of LAP and water-dispersible photoinitiator nanoparticles of TPO, enables the development of novel formulations for 3D bioprinting, tissue engineering applications, and device manufacturing.

Conteúdo relacionado

Tissue engineering fabricates tissues cultures from scaffolds, living cells, and biologically active molecules by simulating the microenvironment of the body to repair or replace damaged tissue.

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica