Direkt zum Inhalt
Merck
  • Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly(L-lactide).

Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly(L-lactide).

ACS nano (2015-01-27)
Young H Lim, Kristin M Tiemann, Gyu Seong Heo, Patrick O Wagers, Yohannes H Rezenom, Shiyi Zhang, Fuwu Zhang, Wiley J Youngs, David A Hunstad, Karen L Wooley
ZUSAMMENFASSUNG

The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach, and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials-silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5-5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against 10 contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Dimethylsulfoxid, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethylsulfoxid, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethylsulfoxid, for molecular biology
Sigma-Aldrich
Dimethylsulfoxid, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Salpetersäure, ACS reagent, 70%
Sigma-Aldrich
Dimethylsulfoxid, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethylsulfoxid, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Ammoniumacetat, ACS reagent, ≥97%
Sigma-Aldrich
Dimethylsulfoxid, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Salpetersäure, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
MOPS, ≥99.5% (titration)
Sigma-Aldrich
Ammoniumacetat, ≥99.99% trace metals basis
Sigma-Aldrich
Benzylalkohol, ReagentPlus®, ≥99%
Sigma-Aldrich
Benzylalkohol, ACS reagent, ≥99.0%
Sigma-Aldrich
1,8-Diazabicyclo[5.4.0]undec-7-en (1,5-5), 98%
Sigma-Aldrich
Salpetersäure, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
MOPS, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
Triethylamin, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Ammoniumacetat, for molecular biology, ≥98%
Sigma-Aldrich
Dimethylsulfoxid, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Ammoniumacetat -Lösung, for molecular biology, 7.5 M
Sigma-Aldrich
2,2-Dimethoxy-2-phenylacetophenon, 99%
USP
Benzylalkohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethylsulfoxid, anhydrous, ≥99.9%
Sigma-Aldrich
MOPS, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
Salpetersäure, red, fuming, HNO3 >90 %
Sigma-Aldrich
Triethylamin, ≥99.5%
Sigma-Aldrich
Dimethylsulfoxid, PCR Reagent
Sigma-Aldrich
Ammoniumacetat, 99.999% trace metals basis
Sigma-Aldrich
Benzoesäure, ACS reagent, ≥99.5%