Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

S6940

Sigma-Aldrich

SigmaScreen Streptavidin High Capacity Coated Plates

96 well clear

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12352204
NACRES:
NA.83

material

polystyrene

Quality Level

description

flat bottom

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

SigmaScreen Streptavidin coated high capacity plates utilize a proprietary coating technology which provides substantially greater biotin binding capacity than standard Streptavidin or ExtrAvidin coated plates. This clear, 96-well plate has a format of breakable 8-well strips on a single-well holding frame, and has a binding capacity of ≥ 15 pmol/well. Streptavidin coated high capacity plates provide a platform which allows the captured protein to be eluted for post-capture analysis by various methods such as MALDI, ICAT or SDS-PAGE.

Legal Information

SigmaScreen is a trademark of Sigma-Aldrich Co. LLC

Storage Class

11 - Combustible Solids

wgk_germany

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lu Li et al.
Analytica chimica acta, 886, 123-132 (2015-09-01)
A method for fabrication of multiplexed optical coding nanobeads (MOCNBs) was developed by hybridizing three types of coding DNAs labeled with different dyes (Cy5, FAM and AMCA) at precisely controlled ratios with biotinylated reporter DNA modified to magnetic streptavidin-coated nanobeads
Hong-Sheng Lim et al.
Journal of immunology (Baltimore, Md. : 1950), 195(11), 5432-5439 (2015-10-27)
Optimal T cell activation typically requires engagement of both the TCR and costimulatory receptors, such as CD28. Engagement of CD28 leads to tyrosine phosphorylation of its cytoplasmic region and recruitment of cytoplasmic signaling proteins. Although the exact mechanism of CD28
Jie Wang et al.
Nature, 569(7757), 509-513 (2019-05-10)
A universal gain-of-function approach for selective and temporal control of protein activity in living systems is crucial to understanding dynamic cellular processes. Here we report development of a computationally aided and genetically encoded proximal decaging (hereafter, CAGE-prox) strategy that enables time-resolved
Yasmin ElTahir et al.
BMC molecular and cell biology, 20(1), 55-55 (2019-12-01)
Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The

Articles

Post-translational modifications such as glycosylation, phosphorylation, and sulfation, to name a few, serve many functions. As a result, the analysis of proteins and their post-translational modifications is particularly important for the study of diseases where multiple genes are known to be involved, such as heart disease, cancer and diabetes.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service