Skip to Content
MilliporeSigma
  • NLRP3 inflammasome induced liver graft injury through activation of telomere-independent RAP1/KC axis.

NLRP3 inflammasome induced liver graft injury through activation of telomere-independent RAP1/KC axis.

The Journal of pathology (2017-04-06)
Hui Liu, Chung Mau Lo, Oscar Wai Ho Yeung, Chang Xian Li, Xiao Bing Liu, Xiang Qi, Kevin Tak Pan Ng, Jiang Liu, Yuen Yuen Ma, Yin Fan Lam, Qizhou Lian, See Ching Chan, Kwan Man
ABSTRACT

Acute-phase inflammation plays a critical role in liver graft injury. Inflammasomes, multi-molecular complexes in the cytoplasm, are responsible for initiating inflammation. Here, we aimed to explore the role of inflammasomes in liver graft injury and further to investigate the regulatory mechanism. In a clinical liver transplant cohort, we found that intragraft expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes was significantly up-regulated post-transplantation. Importantly, overexpression of NLRP3 was strongly associated with poor liver function characterized by high levels of ALT, AST, and urea, as well as neutrophil infiltration after transplantation. The significant correlation between NLRP3 and IL-1β mRNA levels led us to focus on one of the associated upstream regulators, telomere-independent repressor activator protein 1 (RAP1), which was further proved to be co-localized with NLRP3 in neutrophils. In the liver of a mouse model (hepatic ischaemia/reperfusion and hepatectomy model) and isolated neutrophils from RAP1

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-ASC antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Anti-Actin Antibody, clone C4, ascites fluid, clone C4, Chemicon®