Skip to Content
MilliporeSigma
  • Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

Nature communications (2015-10-16)
Philippe Magown, Basavaraj Shettar, Ying Zhang, Victor F Rafuse
ABSTRACT

Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Green Fluorescent Protein Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Monoclonal Anti-Dihydropyridine Receptor (α1 Subunit) antibody produced in mouse, clone 1A, buffered aqueous solution