Skip to Content
MilliporeSigma
  • Whole mount RNA fluorescent in situ hybridization of Drosophila embryos.

Whole mount RNA fluorescent in situ hybridization of Drosophila embryos.

Journal of visualized experiments : JoVE (2013-02-15)
Félix Legendre, Neal Cody, Carole Iampietro, Julie Bergalet, Fabio Alexis Lefebvre, Gaël Moquin-Beaudry, Olivia Zhang, Xiaofeng Wang, Eric Lécuyer
ABSTRACT

Assessing the expression pattern of a gene, as well as the subcellular localization properties of its transcribed RNA, are key features for understanding its biological function during development. RNA in situ hybridization (RNA-ISH) is a powerful method used for visualizing RNA distribution properties, be it at the organismal, cellular or subcellular levels. RNA-ISH is based on the hybridization of a labeled nucleic acid probe (e.g. antisense RNA, oligonucleotides) complementary to the sequence of an mRNA or a non-coding RNA target of interest. As the procedure requires primary sequence information alone to generate sequence-specific probes, it can be universally applied to a broad range of organisms and tissue specimens. Indeed, a number of large-scale ISH studies have been implemented to document gene expression and RNA localization dynamics in various model organisms, which has led to the establishment of important community resources. While a variety of probe labeling and detection strategies have been developed over the years, the combined usage of fluorescently-labeled detection reagents and enzymatic signal amplification steps offer significant enhancements in the sensitivity and resolution of the procedure. Here, we describe an optimized fluorescent in situ hybridization method (FISH) employing tyramide signal amplification (TSA) to visualize RNA expression and localization dynamics in staged Drosophila embryos. The procedure is carried out in 96-well PCR plate format, which greatly facilitates the simultaneous processing of large numbers of samples.

MATERIALS
Product Number
Brand
Product Description

Roche
Digoxigenin-11-UTP