Skip to Content
MilliporeSigma
  • Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells.

Synaptotagmin-like proteins control the formation of a single apical membrane domain in epithelial cells.

Nature cell biology (2012-07-24)
Manuel Gálvez-Santisteban, Alejo E Rodriguez-Fraticelli, David M Bryant, Silvia Vergarajauregui, Takao Yasuda, Inmaculada Bañón-Rodríguez, Ilenia Bernascone, Anirban Datta, Natalie Spivak, Kitty Young, Christiaan L Slim, Paul R Brakeman, Mitsunori Fukuda, Keith E Mostov, Fernando Martín-Belmonte
ABSTRACT

The formation of epithelial tissues requires both the generation of apical-basal polarity and the coordination of this polarity between neighbouring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to the formation of a singular apical membrane, resulting in the contribution of each cell to only a single lumen. Here, from a functional screen for genes required for three-dimensional epithelial architecture, we identify key roles for synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in the generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PtdIns(4,5)P(2)-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE syntaxin-3. Together, Slp2-a/4-a coordinate the spatiotemporal organization of vectorial apical transport to ensure that only a single apical surface, and thus the formation of a single lumen, occurs per cell.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2-Peroxidase (HRP) antibody produced in mouse, clone M2, purified immunoglobulin, buffered aqueous glycerol solution