• Home
  • Search Results
  • Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis.

Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis.

Applied and environmental microbiology (2005-09-10)
Martin Trépanier, Guillaume Bécard, Peter Moutoglis, Claude Willemot, Serge Gagné, Tyler J Avis, Jacques-André Rioux
ABSTRACT

Lipids are the major form of carbon storage in arbuscular-mycorrhizal fungi. We studied fatty acid synthesis by Glomus intraradices and Gigaspora rosea. [(14)C]Acetate and [(14)C]sucrose were incorporated into a synthetic culture medium to test fatty acid synthetic ability in germinating spores (G. intraradices and G. rosea), mycorrhized carrot roots, and extraradical fungal mycelium (G. intraradices). Germinating spores and extraradical hyphae could not synthesize 16-carbon fatty acids but could elongate and desaturate fatty acids already present. The growth stimulation of germinating spores by root exudates did not stimulate fatty acid synthesis. 16-Carbon fatty acids (16:0 and 16:1) were synthesized only by the fungi in the mycorrhized roots. Our data strongly suggest that the fatty acid synthase activity of arbuscular-mycorrhizal fungi is expressed exclusively in the intraradical mycelium and indicate that fatty acid metabolism may play a major role in the obligate biotrophism of arbuscular-mycorrhizal fungi.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Boron trifluoride-methanol solution, 14% in methanol

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.