Skip to Content
MilliporeSigma
  • Photocatalytic oxidation of volatile organic compounds using fluorescent visible light.

Photocatalytic oxidation of volatile organic compounds using fluorescent visible light.

Journal of the Air & Waste Management Association (1995) (2002-07-26)
Yannick Chapuis, Danilo Klvana, Christophe Guy, Jitka Kirchnerova
ABSTRACT

Photocatalytic oxidation (PCO) of volatile organic compounds (VOCs) is a highly attractive alternative technology for purification and deodorization of indoor air. The main objectives of this study were to demonstrate that a common fluorescent visible light (FVL) lamp can be used to effectively remove by PCO low concentrations of VOCs from slightly contaminated air and to provide some fundamental and technical details on the process. The target VOC was n-butanol, which is a standard reference odorant. Its PCO was studied under a long residence time in a 3.7-L cylindrical reactor with commercial titanium dioxide (TiO2) as the reference photocatalyst and using mostly FVL for illumination. For comparison only, a UV (black) light lamp was used. The gas-phase products were detected and quantified online by gas chromatography (GC). The effects of reactor residence time, of inlet concentration, and of the relative light intensity on the efficiency of the process were also evaluated. At a high n-butanol concentration (0.1 vol %), butanal and propanal were identified as the intermediate products of the process; ethanal appeared when the initial concentration was < or = 850 ppm(v). This indicates that PCO leading to CO2 and H2O is relatively slow and proceeds in a stepwise manner. Although the efficiency of the process with an FVL lamp was significantly lower than when using a UV black light, complete PCO of low concentrations was achieved for 100 ppm(v). In a search for a material with photoactivation extended to higher wavelengths or increased photoactivity, several samples of transition metal- or silver ion-doped (2 atomic %) TiO2 as well as SrTi(1-x-)Fe(x)O3 (x = 0.1 and 0.15) perovskites were included in the study. None of these materials was more active than pure TiO2. The results of this study open new horizons in the area of in door air quality (IAQ) control.

MATERIALS
Product Number
Brand
Product Description

Supelco
Aldrich® flask-type sprayer, size 250 mL