Skip to Content
MilliporeSigma
  • Gamma subunit second transmembrane domain contributes to epithelial sodium channel gating and amiloride block.

Gamma subunit second transmembrane domain contributes to epithelial sodium channel gating and amiloride block.

American journal of physiology. Renal physiology (2013-10-11)
Shujie Shi, Thomas R Kleyman
ABSTRACT

The epithelial sodium channel (ENaC) is comprised of three homologous subunits. Channels composed solely of α- and β-subunits (αβ-channels) exhibit a very high open probability (Po) and reduced sensitivity to amiloride, in contrast to channels composed of α- and γ-subunits or of all three subunits (i.e., αγ- and αβγ-channels). A mutant channel comprised of α- and β-subunits, and a chimeric γ-subunit where the region immediately preceding (β12 and wrist) and encompassing the second transmembrane domain (TM2) was replaced with the corresponding region of the β-subunit (γ-βTM2), displayed characteristics reminiscent of αβ-channels, including a reduced amiloride potency of block and a loss of Na(+) self-inhibition (reflecting an increased Po). Substitutions at key pore-lining residues of the γ-βTM2 chimera enhanced the Na(+) self-inhibition response, whereas key γ-subunit substitutions reduced the response. Furthermore, multiple sites within the TM2 domain of the γ-subunit were required to confer high amiloride potency. In summary, we have identified novel pore-lining residues of the γ-subunit of ENaC that are important for proper channel gating and its interaction with amiloride.

MATERIALS
Product Number
Brand
Product Description

USP
Amiloride hydrochloride, United States Pharmacopeia (USP) Reference Standard