Skip to Content
MilliporeSigma
  • Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension.

Nicorandil prevents right ventricular remodeling by inhibiting apoptosis and lowering pressure overload in rats with pulmonary arterial hypertension.

PloS one (2012-09-13)
Xiang-Rong Zuo, Qiang Wang, Quan Cao, Yan-Zhe Yu, Hui Wang, Li-Qing Bi, Wei-Ping Xie, Hong Wang
ABSTRACT

Most of the deaths among patients with severe pulmonary arterial hypertension (PAH) are caused by progressive right ventricular (RV) pathological remodeling, dysfunction, and failure. Nicorandil can inhibit the development of PAH by reducing pulmonary artery pressure and RV hypertrophy. However, whether nicorandil can inhibit apoptosis in RV cardiomyocytes and prevent RV remodeling has been unclear. RV remodeling was induced in rats by intraperitoneal injection of monocrotaline (MCT). RV systolic pressure (RVSP) was measured at the end of each week after MCT injection. Blood samples were drawn for brain natriuretic peptide (BNP) ELISA analysis. The hearts were excised for histopathological, ultrastructural, immunohistochemical, and Western blotting analyses. The MCT-injected rats exhibited greater mortality and less weight gain and showed significantly increased RVSP and RV hypertrophy during the second week. These worsened during the third week. MCT injection for three weeks caused pathological RV remodeling, characterized by hypertrophy, fibrosis, dysfunction, and RV mitochondrial impairment, as indicated by increased levels of apoptosis. Nicorandil improved survival, weight gain, and RV function, ameliorated RV pressure overload, and prevented maladaptive RV remodeling in PAH rats. Nicorandil also reduced the number of apoptotic cardiomyocytes, with a concomitant increase in Bcl-2/Bax ratio. 5-hydroxydecanoate (5-HD) reversed these beneficial effects of nicorandil in MCT-injected rats. Nicorandil inhibits PAH-induced RV remodeling in rats not only by reducing RV pressure overload but also by inhibiting apoptosis in cardiomyocytes through the activation of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels. The use of a mitoK(ATP) channel opener such as nicorandil for PAH-associated RV remodeling and dysfunction may represent a new therapeutic strategy for the amelioration of RV remodeling during the early stages of PAH.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nicorandil, ≥98% (HPLC)