Skip to Content
MilliporeSigma
  • Calpain inhibitors and serine protease inhibitors can produce apoptosis in HL-60 cells.

Calpain inhibitors and serine protease inhibitors can produce apoptosis in HL-60 cells.

Archives of biochemistry and biophysics (1996-10-01)
Q Lu, R L Mellgren
ABSTRACT

Recent investigations indicate that proteolysis is an important event in generation of the apoptosis phenotype. Although various proteases have been suggested to be candidates for this proteolysis, the results from different laboratories are inconsistent. In the present studies, HL-60 cells were treated with cycloheximide to investigate proteases involved in apoptosis. The calpain inhibitors benzyloxycarbonyl-Leu-Leu-Tyr diazomethylketone and acetyl-Leu-Leu-Nle aldehyde were not capable of preventing apoptosis induced by cycloheximide. In the absence of cycloheximide, these two inhibitors could initiate apoptosis in HL-60 cells. The thiol protease inhibitor benzyloxycarbonyl-Leu-Val-Gly diazomethylketone neither prevented nor produced apoptosis. The serine protease inhibitors 3,4-dichloroisocoumarin (DCI) and tosyl-Phe chloromethylketone (TPCK) also induced apoptosis in the absence of cycloheximide. On the other hand, the latter two inhibitors decreased cycloheximide-induced apoptosis, assessed either by cell morphologic changes or DNA ladder generation. Benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone and iodoacetamide, inactivators of interleukin 1beta-converting enzyme (ICE)-like proteases, did not produce apoptosis and inhibited the induction of apoptosis by cycloheximide, calpain inhibitors, or serine protease inhibitors. These results are consistent with the ICE-like proteases having a central role in proteolysis during apoptosis, while calpain-like proteases and the serine proteases sensitive to DCI or TPCK are not required for generation of the apoptosis phenotype in HL-60 cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Calpain Inhibitor I, ≥97% (TLC), powder