Skip to Content
MilliporeSigma
  • Electrochemical Biosensor for Markers of Neurological Esterase Inhibition.

Electrochemical Biosensor for Markers of Neurological Esterase Inhibition.

Biosensors (2021-11-26)
Neda Rafat, Paul Satoh, Robert Mark Worden
ABSTRACT

A novel, integrated experimental and modeling framework was applied to an inhibition-based bi-enzyme (IBE) electrochemical biosensor to detect acetylcholinesterase (AChE) inhibitors that may trigger neurological diseases. The biosensor was fabricated by co-immobilizing AChE and tyrosinase (Tyr) on the gold working electrode of a screen-printed electrode (SPE) array. The reaction chemistry included a redox-recycle amplification mechanism to improve the biosensor's current output and sensitivity. A mechanistic mathematical model of the biosensor was used to simulate key diffusion and reaction steps, including diffusion of AChE's reactant (phenylacetate) and inhibitor, the reaction kinetics of the two enzymes, and electrochemical reaction kinetics at the SPE's working electrode. The model was validated by showing that it could reproduce a steady-state biosensor current as a function of the inhibitor (PMSF) concentration and unsteady-state dynamics of the biosensor current following the addition of a reactant (phenylacetate) and inhibitor phenylmethylsulfonylfluoride). The model's utility for characterizing and optimizing biosensor performance was then demonstrated. It was used to calculate the sensitivity of the biosensor's current output and the redox-recycle amplification factor as a function of experimental variables. It was used to calculate dimensionless Damkohler numbers and current-control coefficients that indicated the degree to which individual diffusion and reaction steps limited the biosensor's output current. Finally, the model's utility in designing IBE biosensors and operating conditions that achieve specific performance criteria was discussed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetylcholinesterase from Electrophorus electricus (electric eel), Type V-S, lyophilized powder, ≥1,000 units/mg protein
Sigma-Aldrich
Tyrosinase from mushroom, lyophilized powder, ≥1000 unit/mg solid