Skip to Content
MilliporeSigma
  • Microscale Self-Assembly of Upconversion Nanoparticles Driven by Block Copolymer.

Microscale Self-Assembly of Upconversion Nanoparticles Driven by Block Copolymer.

Frontiers in chemistry (2020-10-24)
Qianqian Su, Meng-Tao Zhou, Ming-Zhu Zhou, Qiang Sun, Taotao Ai, Yan Su
ABSTRACT

Lanthanide-based upconversion nanoparticles can convert low-energy excitation to high-energy emission. The self-assembled upconversion nanoparticles with unique structures have considerable promise in sensors and optical devices due to intriguing properties. However, the assembly of isotropic nanocrystals into anisotropic structures is a fundamental challenge caused by the difficulty in controlling interparticle interactions. Herein, we report a novel approach for the preparation of the chain-like assemblies of upconversion nanoparticles at different scales from nano-scale to micro-scale. The dimension of chain-like assembly can be fine-tuned using various incubation times. Our study observed Y-junction aggregate morphology due to the flexible nature of amphiphilic block copolymer. Furthermore, the prepared nanoparticle assemblies of upconversion nanoparticles with lengths up to several micrometers can serve as novel luminescent nanostructure and offer great opportunities in the fields of optical applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Yttrium(III) acetate hydrate, 99.9% metals basis
Sigma-Aldrich
Ytterbium(III) acetate hydrate, 99.95% trace metals basis
Sigma-Aldrich
Thulium(III) acetate hydrate, 99.9% trace metals basis