Skip to Content
MilliporeSigma

Modulation of feeding behavior and metabolism by dynorphin.

Scientific reports (2020-03-04)
Aishwarya Ghule, Ildiko Rácz, Andras Bilkei-Gorzo, Este Leidmaa, Meike Sieburg, Andreas Zimmer
ABSTRACT

The neuronal regulation of metabolic and behavioral responses to different diets and feeding regimens is an important research area. Herein, we investigated if the opioid peptide dynorphin modulates feeding behavior and metabolism. Mice lacking dynorphin peptides (KO) were exposed to either a normal diet (ND) or a high-fat diet (HFD) for a period of 12 weeks. Additionally, mice had either time-restricted (TR) or ad libitum (AL) access to food. Body weight, food intake and blood glucose levels were monitored throughout the 12-week feeding schedule. Brain samples were analyzed by immunohistochemistry to detect changes in the expression levels of hypothalamic peptides. As expected, animals on HFD or having AL access to food gained more weight than mice on ND or having TR access. Unexpectedly, KO females on TR HFD as well as KO males on AL ND or AL HFD demonstrated a significantly increased body weight gain compared to the respective WT groups. The calorie intake differed only marginally between the genotypes: a significant difference was present in the female ND AL group, where dynorphin KO mice ate more than WT mice. Although female KO mice on a TR feeding regimen consumed a similar amount of food as WT controls, they displayed significantly higher levels of blood glucose. We observed significantly reduced levels of hypothalamic orexigenic peptides neuropeptide Y (NPY) and orexin-A in KO mice. This decrease became particularly pronounced in the HFD groups and under AL condition. The kappa opiod receptor (KOR) levels were higher after HFD compared to ND feeding in the ventral pallidum of WT mice. We hypothesize that HFD enhances dynorphin signaling in this hedonic center to maintain energy homeostasis, therefore KO mice have a more pronounced phenotype in the HFD condition due to the lack of it. Our data suggest that dynorphin modulates metabolic changes associated with TR feeding regimen and HFD consumption. We conclude that the lack of dynorphin causes uncoupling between energy intake and body weight gain in mice; KO mice maintained on HFD become overweight despite their normal food intake. Thus, using kappa opioid receptor agonists against obesity could be considered as a potential treatment strategy.