Skip to Content
MilliporeSigma
  • N-Methyl-D-Aspartate Receptor Hypofunction in Meg-01 Cells Reveals a Role for Intracellular Calcium Homeostasis in Balancing Megakaryocytic-Erythroid Differentiation.

N-Methyl-D-Aspartate Receptor Hypofunction in Meg-01 Cells Reveals a Role for Intracellular Calcium Homeostasis in Balancing Megakaryocytic-Erythroid Differentiation.

Thrombosis and haemostasis (2020-04-15)
James I Hearn, Taryn N Green, Martin Chopra, Yohanes N S Nursalim, Leandro Ladvanszky, Nicholas Knowlton, Cherie Blenkiron, Raewyn C Poulsen, Dean C Singleton, Stefan K Bohlander, Maggie L Kalev-Zylinska
ABSTRACT

The release of calcium ions (Ca2+) from the endoplasmic reticulum (ER) and related store-operated calcium entry (SOCE) regulate maturation of normal megakaryocytes. The N-methyl-D-aspartate (NMDA) receptor (NMDAR) provides an additional mechanism for Ca2+ influx in megakaryocytic cells, but its role remains unclear. We created a model of NMDAR hypofunction in Meg-01 cells using CRISPR-Cas9 mediated knockout of the GRIN1 gene, which encodes an obligate, GluN1 subunit of the NMDAR. We found that compared with unmodified Meg-01 cells, Meg-01-GRIN1-/- cells underwent atypical differentiation biased toward erythropoiesis, associated with increased basal ER stress and cell death. Resting cytoplasmic Ca2+ levels were higher in Meg-01-GRIN1-/- cells, but ER Ca2+ release and SOCE were lower after activation. Lysosome-related organelles accumulated including immature dense granules that may have contributed an alternative source of intracellular Ca2+. Microarray analysis revealed that Meg-01-GRIN1-/- cells had deregulated expression of transcripts involved in Ca2+ metabolism, together with a shift in the pattern of hematopoietic transcription factors toward erythropoiesis. In keeping with the observed pro-cell death phenotype induced by GRIN1 deletion, memantine (NMDAR inhibitor) increased cytotoxic effects of cytarabine in unmodified Meg-01 cells. In conclusion, NMDARs comprise an integral component of the Ca2+ regulatory network in Meg-01 cells that help balance ER stress and megakaryocytic-erythroid differentiation. We also provide the first evidence that megakaryocytic NMDARs regulate biogenesis of lysosome-related organelles, including dense granules. Our results argue that intracellular Ca2+ homeostasis may be more important for normal megakaryocytic and erythroid differentiation than currently recognized; thus, modulation may offer therapeutic opportunities.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-NMDAR1 Antibody, clone 54.1, clone 54.1, Chemicon®, from mouse
Sigma-Aldrich
MISSION® esiRNA, targeting human GRIN1
Sigma-Aldrich
Cyclopiazonic acid from Penicillium cyclopium, ≥98% (HPLC), powder
Sigma-Aldrich
Thapsigargin, ≥98% (HPLC), solid film
Sigma-Aldrich
MISSION® esiRNA, targeting human GPRIN1