Skip to Content
MilliporeSigma
  • NR4A Nuclear Receptors Target Poly-ADP-Ribosylated DNA-PKcs Protein to Promote DNA Repair.

NR4A Nuclear Receptors Target Poly-ADP-Ribosylated DNA-PKcs Protein to Promote DNA Repair.

Cell reports (2019-02-21)
Deeksha Munnur, Joanna Somers, George Skalka, Ria Weston, Rebekah Jukes-Jones, Mohammed Bhogadia, Cyril Dominguez, Kelvin Cain, Ivan Ahel, Michal Malewicz
ABSTRACT

Although poly-ADP-ribosylation (PARylation) of DNA repair factors had been well documented, its role in the repair of DNA double-strand breaks (DSBs) is poorly understood. NR4A nuclear orphan receptors were previously linked to DSB repair; however, their function in the process remains elusive. Classically, NR4As function as transcription factors using a specialized tandem zinc-finger DNA-binding domain (DBD) for target gene induction. Here, we show that NR4A DBD is bi-functional and can bind poly-ADP-ribose (PAR) through a pocket localized in the second zinc finger. Separation-of-function mutants demonstrate that NR4A PAR binding, while dispensable for transcriptional activity, facilitates repair of radiation-induced DNA double-strand breaks in G1. Moreover, we define DNA-PKcs protein as a prominent target of ionizing radiation-induced PARylation. Mechanistically, NR4As function by directly targeting poly-ADP-ribosylated DNA-PKcs to facilitate its autophosphorylation-promoting DNA-PK kinase assembly at DNA lesions. Selective targeting of the PAR-binding pocket of NR4A presents an opportunity for cancer therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-53BP1 Antibody, clone BP18, ascites fluid, clone BP18, Chemicon®
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Anti-α-Tubulin antibody, Mouse monoclonal, clone B-5-1-2, purified from hybridoma cell culture